精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x)满足(x+2)f′(x)<0,又a=f(log
1
2
3),b=f((
1
3
)0.3),c=f(ln3)
,则(  )
A、a<b<c
B、b<c<a
C、c<a<b
D、c<b<a
分析:先确定自变量的范围和大小,再根据导数的符号确定函数的单调性,进一步进行判定函数值的大小即可.
解答:解:∵-2<log
1
2
3
<0<(
1
3
)
0.3
<1<ln3
∴x+2>0
而(x+2)f′(x)<0,则f′(x)<0
所以函数f(x)在(-2,+∞)上是单调减函数
∴a>b>c,
故选D
点评:本题主要考查了利用导数比较函数值的大小,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数f(x)既是偶函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

20、已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)在x=-1处取极值.
(1)求f(x)的解析式;
(2)讨论f(x)在区间[-3,3]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(x+2)=
1-f(x)1+f(x)
,当x∈(0,4)时,f(x)=x2-1,则f(2010)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值与最小值的差为4,相邻两个最低点之间距离为π,函数y=sin(2x+
π
3
)图象所有对称中心都在f(x)图象的对称轴上.
(1)求f(x)的表达式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函数f(x)一定存在零点的区间是(  )

查看答案和解析>>

同步练习册答案