A. | $\frac{{3+2\sqrt{2}}}{2}$ | B. | 3 | C. | $\frac{3}{2}$ | D. | $3+2\sqrt{2}$ |
分析 利用“乘1法”与基本不等式的性质即可得出.
解答 解:∵正实数a,b满足a+b=2,
则$\frac{1}{a}+\frac{2}{b}$=$\frac{1}{2}(a+b)(\frac{1}{a}+\frac{2}{b})$=$\frac{1}{2}(3+\frac{b}{a}+\frac{2a}{b})$≥$\frac{1}{2}(3+2\sqrt{\frac{b}{a}•\frac{2a}{b}})$=$\frac{1}{2}(3+2\sqrt{2})$,当且仅当b=2a=4($\sqrt{2}$-1)时取等号.
因此最小值为$\frac{3+2\sqrt{2}}{2}$.
故选:A.
点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若a>b,则a-c>b-c | B. | 若a>b,则$\frac{1}{a}<\frac{1}{b}$ | C. | 若a>b,则a2>b2 | D. | 若a>b,则ac2>bc2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 最小正周期为π的奇函数 | B. | 最小正周期为π的偶函数 | ||
C. | 最小正周期为$\frac{π}{2}$的奇函数 | D. | 最小正周期为$\frac{π}{2}$的偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<0 | B. | a>0且a≠1 | C. | a<1 | D. | a<1且a≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com