精英家教网 > 高中数学 > 题目详情
已知椭圆及直线l:y=x+m.
(1)当直线l与椭圆有公共点时,求实数m的取值范围;
(2)若直线l过椭圆右焦点,并与椭圆交于A、B两点,求弦AB之长.
【答案】分析:(1)当直线l与椭圆有公共点时,两方方程联立,消去一个未知数,得到的关于另一个未知数的一元二次方程中,△≥0,即可得到m的范围.
(2)先求出过椭圆右焦点的直线方程,在于椭圆方程联立,消去y,得到关于x的一元二次方程,求两根之和,两根之积,再利用弦长公式求弦AB之长.
解答:解:(1)由  消y得,3x2+4mx+2m2-2=0
由于直线l与椭圆有公共点∴△=16m2-12(2m2-2)≥0,得m2≤3
故-≤m≤
(2)设A(x1,y1),B(x2,y2),直线l过椭圆右焦点(1,0)
此时直线l:y=x-1代入椭圆方程,得3x2-4x=0
故x=0或x=,,有|AB|=|x1-x2|=
点评:本题考查了直线与椭圆位置关系的判断,以及弦长公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x22
+y2=1
及直线l:y=x+m.
(1)当直线l与椭圆有公共点时,求实数m的取值范围;
(2)若直线l过椭圆右焦点,并与椭圆交于A、B两点,求弦AB之长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆4x2+y2=1及直线l:y=x+m.
(Ⅰ)当m为何值时,直线l与椭圆有公共点?
(Ⅱ)若直线l被椭圆截得的线段长为
4
2
5
,求直线的方程.
(Ⅲ)若直线l与椭圆相交于A、B两点,是否存在m的值,使得
OA
OB
=0
?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆数学公式及直线l:y=x+m.
(1)当直线l与椭圆有公共点时,求实数m的取值范围;
(2)若直线l过椭圆右焦点,并与椭圆交于A、B两点,求弦AB之长.

查看答案和解析>>

科目:高中数学 来源:湖南省期中题 题型:解答题

已知椭圆及直线l:y=x+m。
(1)当直线l与椭圆有公共点时,求实数m的取值范围;
(2)求直线l被椭圆截得的弦长的最大值。

查看答案和解析>>

同步练习册答案