精英家教网 > 高中数学 > 题目详情
10.已知动直线y=k(x+1)与椭圆C:x2+3y2=5相交于A、B两点,已知点$M(-\frac{7}{3},0)$,则$\overrightarrow{MA}•\overrightarrow{MB}$的值是(  )
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$-\frac{4}{9}$D.$\frac{4}{9}$

分析 联立直线方程与椭圆方程,化为关于x的一元二次方程,利用根与系数的关系结合数量积的坐标运算求得答案.

解答 解:联立$\left\{\begin{array}{l}{y=k(x+1)}\\{{x}^{2}+3{y}^{2}=5}\end{array}\right.$,得(1+3k2)x2+6k2x+3k2-5=0,
△=36k4-4(3k2+1)(3k2-5)=48k2+20>0,
${x_1}+{x_2}=-\frac{{6{k^2}}}{{3{k^2}+1}}$,${x_1}{x_2}=\frac{{3{k^2}-5}}{{3{k^2}+1}}$,
∴$\overrightarrow{MA}•\overrightarrow{MB}=({x_1}+\frac{7}{3},{y_1})({x_2}+\frac{7}{3},{y_2})=({x_1}+\frac{7}{3})({x_2}+\frac{7}{3})+{y_1}{y_2}$
=$({x_1}+\frac{7}{3})({x_2}+\frac{7}{3})+{k^2}({x_1}+1)({x_2}+1)$=$(1+{k^2}){x_1}{x_2}+(\frac{7}{3}+{k^2})({x_1}+{x_2})+\frac{49}{9}+{k^2}$
=$(1+{k^2})\frac{{3{k^2}-5}}{{3{k^2}+1}}+(\frac{7}{3}+{k^2})(-\frac{{6{k^2}}}{{3{k^2}+1}})+\frac{49}{9}+{k^2}$
=$\frac{{-3{k^4}-16{k^2}-5}}{{3{k^2}+1}}+\frac{49}{9}+{k^2}$=$\frac{4}{9}$.
故选:D.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.集合A={1,2,3,4,5},B={x|x2-3x<0},则A∩B=(  )
A.{1,2}B.{2,3}C.{3,4}D.{4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列命题中
①若loga3>logb3,则a>b;
②函数f(x)=x2-2x+3,x∈[0,+∞)的值域为[2,+∞);
③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;
④函数$h(x)=\frac{{1-{e^{2x}}}}{e^x}$既是奇函数又是减函数.
其中正确的命题有②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是$\frac{1}{6}$,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线4x+3y+a=0与圆(x-1)2+(y-2)2=9相交于A、B两点,且$|{AB}|=4\sqrt{2}$,则实数a的值是(  )
A.a=-5或a=-15B.a=-5或a=15C.a=5或a=-15D.a=5或a=15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知斜率$k=\frac{1}{2}$且过点A(7,1)的直线l1与直线l2:x+2y+3=0相交于点M.
(Ⅰ)求以点M为圆心且过点B(4,-2)的圆的标准方程C;
(Ⅱ)求过点N(4,2)且与圆C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足$\left\{\begin{array}{l}x+y≥3\\ x-y≤2\\ y≤2.\end{array}\right.$那么z=2x+y的最小值为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线y=4x2的焦点到准线的距离是(  )
A.4B.2C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{2}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$,则|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{10}$.

查看答案和解析>>

同步练习册答案