精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)若f(x)在[0,2]上是增函数,x=2是方程f(x)=0的一个实根,求证:f(1)≤-2;
(2)若f(x)的图象上任意不同两点的连线斜率小于1,求实数的取值范围.
分析:(1)由题意可知f'(x)=-3x2+2ax≥0在[0,2]上恒成立,2a≥3x恒成立,由3x的最大值等于6,可得2a≥6,由f(2)=0得b=8-4a,故f(1)=7-3a≤-2成立.
(2)设P(x,f(x)),Q(y,f(y))是f(x)图象上的两个不同点,则
f(x)-f(y)
x-y
<1
,即x2+(y-a)x+(y2-ay+1)>0 恒成立.由△<0 得到 3y2-2ay-a2+4>0恒成立,故此式的判别式△′<0,解不等式求得a的范围.
解答:解:(1)f'(x)=-3x2+2ax,由题可知f'(x)=-3x2+2ax≥0在[0,2]上恒成立.
由f'(x)=-3x2+2ax≥0 得,2ax≥3x2,当x=0时此式显然成立,a∈R;
当x∈(0,2]时,有2a≥3x恒成立,易见应当有2a≥6,∴a≥3,
可见,f'(x)=-3x2+2ax≥0在[0,2]上恒成立,须有a≥3.又f(2)=0,∴b=8-4a,
故 f(1)=a+b-1=7-3a≤-2.
(2)设P(x,f(x)),Q(y,f(y))是f(x)图象上的两个不同点,则
f(x)-f(y)
x-y
<1

(-x3+ax2+b)-(-y3+ay2+b)
x-y
<1
,∴-(x2+y2+xy)+a(x+y)<1,
∴x2+(y-a)x+(y2-ay+1)>0 恒成立,从而△<0,∴3y2-2ay-a2+4>0,
从而此式的判别式△′<0,∴a2<3,∴a∈(-
3
3
)
点评:本题考查函数的恒成立问题,利用导数研究函数的单调性,直线的斜率,把握好恒成立的条件是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案