精英家教网 > 高中数学 > 题目详情
8.曲线y=x4与直线y=4x+b相切,则实数b的值是-3.

分析 设直线与曲线的切点为P(m,n),点P分别满足直线方程与曲线方程,同时y'(m)=4即可求出b值

解答 解:设直线与曲线的切点为P(m,n)
则有:$\left\{\begin{array}{l}{y'(m)=4}\\{4m+b=n}\end{array}\right.$⇒$\left\{\begin{array}{l}{4{m}^{3}=4}\\{4m+b=n}\end{array}\right.$,化简求:m=1,b=n-4;
又因为点P满足曲线y=x4,所以:n=1;
则:b=n-4=-3;
故答案为:-3.

点评 本题主要考察了点满足曲线,以及利用导数研究曲线上某点切线方程,属中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的偶函数f(x)满足f(x+4)=-f(x),且在区间[0,4]上市减函数,则f(10)、f(13)、f(15)这三个函数值从小到大排列为f(13)<f(10)<f(15).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(3x)=2xlog2x,那么f(3)的值是0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知tanα=2,则$\frac{{sin(α+\frac{π}{2})+cos(α-\frac{π}{2})}}{{3sin(\frac{π}{2}-α)-cos(\frac{π}{2}+α)}}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)={x^2}+4[sin(θ+\frac{π}{3})]•x-2$,θ∈[0,2π)
(1)若函数f(x)是偶函数:①求tanθ的值;②求$\sqrt{3}sinθ•cosθ+{cos^2}θ$的值.
(2)若f(x)在$[-\sqrt{3},1]$上是单调函数,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=(x2+x+m)ex(其中m∈R,e为自然对数的底数).若在x=-3处函数f (x)有极大值,则函数f (x)的极小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某软件公司新开发一款游戏软件,该软件按游戏的难易程度共设置若干关的闯关游戏,为了激发闯关热情,每闯过一关都奖励若干慧币(一种网络虚拟币).设第n关奖励an个慧币,且满足$\frac{1}{2}$an≤an+1≤4an,a1=1,该软件提供了两种奖励方案:第一种,从第二关开始,每闯过一关奖励的慧币数是前一关的q倍;第二种,从第二关开始每一关比前一关多奖励d慧币(d∈R);游戏规定:闯关者须于闯关前任选一种奖励方案.
(Ⅰ)若选择第一种方案,设第一关到第n关奖励的总慧币数为Sn,即Sn=a1+a2+…+an,且$\frac{1}{2}$Sn≤Sn+1
4Sn,求q的取值范围;
(Ⅱ)如果选择第二种方案,且设置第一关到第k关奖励的总币数为100(即a1+a2+a3+…+ak=100,k∈N*)时获特别奖,为了增加获特别奖的难度,如何设置d的取值,使得k最大,并求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x、y满足$\left\{\begin{array}{l}y≥0\\ x+y≤0\\ 2x+y+2≤0\end{array}$,则z=$\frac{y-1}{x-1}$的取值范围是(  )
A.$(-2,\left.{-\frac{1}{3}}]$B.$(-2,\left.{\frac{1}{2}}]$C.$(-\frac{1}{3},\left.{\frac{1}{2}}]$D.$(-1,\left.{\frac{1}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow a=(4,3)$,$\overrightarrow b=(1,2)$.
(1)设$\overrightarrow a$与$\overrightarrow b$的夹角为θ,求cosθ的值;
(2)若$\overrightarrow a-λ\overrightarrow b$与$2\overrightarrow a+\overrightarrow b$垂直,求实数λ的值..

查看答案和解析>>

同步练习册答案