精英家教网 > 高中数学 > 题目详情
9、设等差数列{an}的前n项之和Sn满足S10-S5=40,那么a8=
8
分析:根据前10项的和减去前5项的和等于第6项加到第10项,然后把5项中的项数之和为14的两项结合后,利用等差数列的性质得到第6项加到第10项的和等于第8项的5倍,由S10-S5=40列出关于第8项的方程,求出方程的解即可得到a8的值.
解答:解:由S10-S5=a6+a7+…+a10=(a6+a10)+(a7+a9)+a8=5a8=40,
所以a8=8.
故答案为:8
点评:此题考查学生灵活运用等差数列的前n项和的公式化简求值,掌握等差数列的性质,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn.若S2k=72,且ak+1=18-ak,则正整数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•山东)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为TnTn+
an+12n
(λ为常数).令cn=b2n(n∈N)求数列{cn}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项之和为Sn满足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a4-1)3+2012(a4-1)=1(a2009-1)3+2012(a2009-1)=-1,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S9=81,S6=36,则S3=(  )

查看答案和解析>>

同步练习册答案