【题目】把方程表示的曲线作为函数的图象,则下列结论正确的是( )
①在R上单调递减
②的图像关于原点对称
③的图象上的点到坐标原点的距离的最小值为3
④函数不存在零点
A.①③B.①②③C.①③④D.①②③④
科目:高中数学 来源: 题型:
【题目】设 (,).
(1)若展开式中第5项与第7项的系数之比为3∶8,求k的值;
(2)设(),且各项系数,,,…,互不相同.现把这个不同系数随机排成一个三角形数阵:第1列1个数,第2列2个数,…,第n列n个数.设是第i列中的最小数,其中,且i,.记的概率为.求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A、B两人进行一局围棋比赛,A获得的概率为0.8,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计B获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5,6,7表示A获胜;8,9表示B获胜,这样能体现A获胜的概率为0.8.因为采用三局两胜制,所以每3个随机数作为一组.
例如,产生30组随机数:034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751,据此估计B获胜的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用一个平行于底面的截面去截一个正棱锥,截面和底面间的几何体叫正棱台.如图,在四棱台中,,分别为的中点.
(Ⅰ)求证:平面;
(Ⅱ)若侧棱所在直线与上下底面中心的连线所成的角为,求直线与平面所成的角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗的研发费用(百万元)和销量(万盒)的统计数据如下:
研发费用(百万元) | 2 | 3 | 6 | 10 | 13 | 14 |
销量(万盒) | 1 | 1 | 2 | 2.5 | 4 | 4.5 |
(1)根据上表中的数据,建立关于的线性回归方程(用分数表示);
(2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形中,,,,,,点E在上,且,将三角形沿线段折起到的位置,(如图2).
(Ⅰ)求证:平面平面;
(Ⅱ)在线段上存在点F,满足,求平面与平面所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱的侧棱和底面垂直,且所有顶点都在球O的表面上,侧面的面积为.给出下列四个结论:
①若的中点为E,则平面;
②若三棱柱的体积为,则到平面的距离为3;
③若,,则球O的表面积为;
④若,则球O体积的最小值为.
当则所有正确结论的序号是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com