精英家教网 > 高中数学 > 题目详情
9.程序框图如图所示,则该程序运行后输出n的值是(  )
A.4B.2C.1D.2017

分析 根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,执行语句输出n,从而到结论.

解答 解:第1步:n=1,k=0,n=4,k=1,
第2步:n=4,n=2,k=2,
第3步:n=2,n=1,k=3,
第4步:n=1,n=4,k=4,
第5步:n=4,n=2,k=5,
第6步:n=2,n=1,k=6,
…,
由2018÷3=672+2,
同第2步,此时n=4,n=2,k=2018>2017,
输出n=2,
故选:B.

点评 本题主要考查了循环结构,当满足条件,执行循环,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设D为不等式组$\left\{\begin{array}{l}x+y≥0\\ x-y≤0\\ x+3y≤3\end{array}\right.$表示的平面区域,对于区域D内除原点外的任一点A(x,y),则2x+y的最大值是$\frac{9}{4}$,$\frac{x-y}{{\sqrt{{x^2}+{y^2}}}}$的取值范围是[-$\sqrt{2}$,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=log2(3-2x)的定义域是(  )
A.(-∞,$\frac{3}{2}$)B.(0,$\frac{3}{2}$)C.(0,1)∪(1,$\frac{3}{2}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆O的方程为x2+y2=5.
(1)P是直线y=$\frac{1}{2}$x-5上的动点,过P作圆O的两条切线PC、PD,切点为C、D,求证:直线CD过定点;
(2)若EF、GH为圆O的两条互相垂直的弦,垂足为M(1,1),求四边形EGFH面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合U=R,集合A={x|1<2x<4},B={x|x2-1≥0}则A∩(∁UB)=(  )
A.{x|1<x<2}B.{x|0<x<1|}C.{x|1≤x<2}D.{x|0<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(x-$\frac{2}{x}$)4(x-2)的展开式中,x2的系数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示的算法框图输出的结果为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知M是直线l:x=-1上的动点,点F的坐标是(1,0),过M的直线l′与l垂直,并且l′与线段MF的垂直平分线相交于点N.
(Ⅰ)求点N的轨迹C的方程;
(Ⅱ)设曲线C上的动点A关于x轴的对称点为A′,点P的坐标为(2,0),直线AP与曲线C的另一个交点为B(B与A′不重合),是否存在一个定点T,使得T,A′,B三点共线?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 设PD=AD=1,求直线PC与平面ABCD所成角的正切值.

查看答案和解析>>

同步练习册答案