精英家教网 > 高中数学 > 题目详情

【题目】已知直线y=ax+1和抛物线y2=4x相交于不同的AB两点.

)若a=-2,求弦长|AB|

)若以AB为直径的圆经过原点O,求实数a的值.

【答案】;(

【解析】

)将直线y=x+1和抛物线y2=4x联立,消去y可得x的二次方程,运用韦达定理和弦长公式,计算可得所求值;

)将直线y=ax+1和抛物线y2=4x联立,消去y可得x的二次方程,运用判别式大于0和韦达定理,由题意可得OAOB,可得x1x2+y1y2=0,结合AB均在直线y=ax+1上,可得a的方程,解方程即可得到所求值.

解:()将直线y=x+1和抛物线y2=4x联立,可得4x2x+1=0

Ax1y1),Bx2y2),可得x1+x2=2x1x2=

即有|AB|=|x1-x2|===

)将直线y=ax+1和抛物线y2=4x联立,可得a2x2+2a-4x+1=0a≠0

Ax1y1),Bx2y2),可得=2a-42-4a2=16-16a0,即a1

x1+x2=x1x2=y1y2=ax1+1)(ax2+1=a2x1x2+ax1+x2+1

AB为直径的圆经过原点O,可得OAOB,可得x1x2+y1y2=0

即有(1+a2x1x2+ax1+x2+1=1+a2+a+1=0

解得a=,满足0

a=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工艺公司要对某种工艺品深加工,已知每个工艺品进价为20元,每个的加工费为n元,销售单价为x.根据市场调查,须有,同时日销售量m(单位:个)与成正比.当每个工艺品的销售单价为29元时,日销售量为1000.

1)写出日销售利润y(单位:元)与x的函数关系式;

2)当每个工艺品的加工费用为5元时,要使该公司的日销售利润为100万元,试确定销售单价x的值.(提示:函数的图象在上有且只有一个公共点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ln(ax+b)+x2(a≠0).

(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=xab的值;

(2)f(x)≤x2+x恒成立,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是素数,证明存在0,1,2,…,的一个排列(,…,),使得,…,.被除的余数各不相同.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在区间D上的函数:若存在闭区间和常数e,使得对任意,都有,且对任意,当时,恒成立,则称函数为区间D上的平底型函数.

1)判断函数是否为R上的平底型函数?并说明理由;

2)若函数是区间上的平底型函数,求mn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,若,求的取值范围;

2)若定义在上的奇函数满足,且当,求上的解析式;

3)对于(2)中的,若关于的不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.

(1)分别求出两人得分的平均数与方差;

(2)根据图和上面算得的结果,对两人的训练成绩作出评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面.

(Ⅰ)求证:平面

(Ⅱ)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程有两个不等的实数根,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

同步练习册答案