精英家教网 > 高中数学 > 题目详情
9.已知圆x2+y2+2ax-2ay+2a2-4a=0(0<a≤4)的圆心为C,直线l:y=x+4.
(Ⅰ)写出该圆的圆心坐标及半径;
(Ⅱ)求直线l被圆C所截得弦长的最大值.

分析 (1)将圆的方程转化为标准方程求得圆心C的坐标和半径;
(2)求得圆心C到直线l的距离,由圆弦长、圆心距和圆的半径之间关系得L=2$\sqrt{2{a}^{2}-(\sqrt{2}|2-a|)^{2}}$=2$\sqrt{-2(a-3)^{2}+10}$,最后由二次函数法求解.

解答 解:(1)已知圆的标准方程是(x+a)2+(y-a)2=4a(0<a≤4),
则圆心C的坐标是(-a,a),半径为2$\sqrt{a}$.
(2)直线l的方程化为:x-y+4=0.则圆心C到直线l的距离是=$\frac{|4-2a|}{\sqrt{2}}$=$\sqrt{2}$|2-a|.
设直线l被圆C所截得弦长为L,由圆弦长、圆心距和圆的半径之间关系是:
L=2$\sqrt{2{a}^{2}-(\sqrt{2}|2-a|)^{2}}$=2$\sqrt{-2(a-3)^{2}+10}$,
∵0<a≤4,∴当a=3时,L的最大值为2$\sqrt{10}$.

点评 本题主要考查直线与圆的位置关系及其方程的应用,主要涉及了直线与圆相交,由圆心距,半径和圆的弦长构成的直角三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若关于x的不等式|x+1|-|x-2|≤a的解集为∅,则实数a的取值范围是a>3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,边长为2的正三角形ABC放置在平面直角坐标系xOy中,AC在x轴上,顶点B与y轴上的定点P重合.将正三角形ABC沿x轴正方向滚动,即先以顶点C为旋转中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为旋转中心顺时针旋转,如此继续.当△ABC滚动到△A1B1C1时,顶点B运动轨迹的长度为$\frac{8π}{3}$;在滚动过程中,$\overrightarrow{OB}$•$\overrightarrow{OP}$的最大值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某校有150位教职员工,其每周用于锻炼身体所用时间的频率分布直方图如图所示,据图估计,锻炼时间在[8,10)小时内的人数为(  )
A.30B.120C.57D.93

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.与椭圆$\frac{{x}^{2}}{4}$+y2=1共焦点且过点P(2,1)的双曲线方程是(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.$\frac{{x}^{2}}{3}$-y2=1C.$\frac{{x}^{2}}{2}$-y2=1D.x2-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知cosθ>0,tan(θ+$\frac{π}{4}$)=$\frac{1}{3}$,则θ在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如果将函数f(x)=sin2x图象向左平移φ(φ>0)个单位,函数g(x)=cos(2x-$\frac{π}{6}$)图象向右平移φ个长度单位后,二者能够完全重合,则φ的最小值为$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若直线(a+1)x+ay=0与直线ax+2y=1垂直,则实数a=0或-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,由曲线$y=\frac{1}{x}({x>0})$与直线y=x和y=3所围成的封闭图形的面积为4-ln3.

查看答案和解析>>

同步练习册答案