精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax3+bx2+cx+d是R上的奇函数,且在x=1时取得极小值-数学公式
(1)求函数f(x)的解析式;
(2)对任意x1,x2∈[-1,1],证明:f(x1)-f(x2)≤数学公式

解:(1)可知b=d=0,(2分)
所以f′(x)=3ax2+c
可知??
经检验知:f(x)=x3-x(4分)
(2)即证f(x)max-f(x)min(6分)
因为f′(x)=x2-1,所以x∈[-1,1]时f′(x)≤0,从而函数f(x)在[-1,1]上单调递减,
所以f(x)max=f(-1)=,f(x)min=f(1)=
所以f(x)max-f(x)min
从而对任意x1,x2∈[-1,1],有f(x1)-f(x2)≤,(10分)
分析:(1)根据函数是奇函数,得出ac的值,在求出函数的导数,根据在x=1处的有极值得出在x=1处的导数为0,求出b的值
(2)球出导数判断函数的极值,以及在端点处的端点值,比较极值和端点值大小,确定函数的最值,根据函数两最值之差最大证明f(x1)-f(x2)≤
点评:该题考查函数的求导,考查函数两最值之差最大,考查函数的奇偶性对应的函数奇此项的系数,属于简单题,但是函数两最值之差最大可能会想不到.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案