精英家教网 > 高中数学 > 题目详情
1.扇形的圆心角是60°,半径为2$\sqrt{3}$cm,则扇形的面积为2πcm2

分析 利用扇形面积计算公式即可得出.

解答 解:S扇形=$\frac{1}{2}α{r}^{2}$=$\frac{1}{2}×\frac{π}{3}×(2\sqrt{3})^{2}$=2πcm2
故答案为:2π.

点评 本题考查了扇形面积计算公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.“x-3=0”是“(x-3)(x+4)=0”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分又不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点M(1,0),直线l:x-2y-2=0;则过点M且与直线l平行的直线方程为x-2y-1=0;以M为圆心且被l截得的弦长为$\frac{4}{5}\sqrt{5}$的圆的方程是$(x-1)^{2}+{y}^{2}=\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,输出的S值为-4时,则输入的S0的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{x^2}{3}$-$\frac{y^2}{4}$=1的渐近线方程是y=±$\frac{2\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a=({2,1})$,$\overrightarrow{b}$=(-2,k2),则k=2是$\overrightarrow{a}$⊥$\overrightarrow{b}$的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的图象的相邻两对称中心的距离为$\frac{π}{2}$,且过点($\frac{π}{8}$,-1).
(1)求函数f(x)的解析式;
(2)五点作图法画出函数f(x)在长度为一个周期的闭区间上的简图;
(3)求方程f(x)-2=m在x∈[$\frac{π}{4}$,$\frac{2π}{3}$]上有解,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数$f(x)=\sqrt{4-{x^2}}$,则f(x)的定义域为[-2,2];当x=±2时,f(x)取最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=1-cos2x的周期是(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

同步练习册答案