精英家教网 > 高中数学 > 题目详情
11.期中考试后,某教师对其所教的甲、乙两个班的学生试卷进行卷面分析.已知甲、乙两班成绩在80分以上的学生分别有20人和16人,现用分层抽样法从甲、乙两班成绩在80分以上的学生中抽取9人进行分析.
(I)若从所抽取的9人中任选4人进行运算错误分析,求这4人不是同一个班的概率;
(Ⅱ)若从所抽取的9人中任选3人进行题意理解错误分析,记这3人中乙班的人数为X,求X的分布列和数学期望.

分析 (1)由分层抽样性质得甲班抽取5人,乙班抽取4人,从所抽取的9人中任选4人进行运算错误分析,利用对立事件概率计算公式能求出这4人不是同一个班的概率.
(2)由已知得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.

解答 解:(1)由分层抽样性质得甲班抽取人数为:$20×\frac{9}{20+16}$=5,
乙班抽取人数为:16×$\frac{9}{20+16}$=4,
∴从所抽取的9人中任选4人进行运算错误分析,这4人不是同一个班的概率:
p=1-$\frac{{C}_{5}^{4}}{{C}_{9}^{4}}$-$\frac{{C}_{4}^{4}}{{C}_{9}^{4}}$=$\frac{20}{21}$.
(2)由已知得X的可能取值为0,1,2,3,
P(X=0)=$\frac{{C}_{5}^{3}}{{C}_{9}^{3}}$=$\frac{10}{84}$,
P(X=1)=$\frac{{C}_{5}^{2}{C}_{4}^{1}}{{C}_{9}^{3}}$=$\frac{40}{84}$,
P(X=2)=$\frac{{C}_{5}^{1}{C}_{4}^{2}}{{C}_{9}^{3}}$=$\frac{30}{84}$,
P(X=3)=$\frac{{C}_{4}^{3}}{{C}_{9}^{3}}$=$\frac{4}{84}$,
∴X的分布列为:

 X 0 1 2 3
 P $\frac{10}{84}$ $\frac{40}{84}$ $\frac{30}{84}$ $\frac{4}{84}$
EX=$0×\frac{10}{84}+1×\frac{40}{84}+2×\frac{30}{84}+3×\frac{4}{84}$=$\frac{4}{3}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.某商店举行抽奖活动,袋中共有形状大小相同的三个红球三个绿球共六个球.顾客随机摸三个球,若是3个红球,则为一等奖;恰有2个红球,则为二等奖,只有1个红球,则为三等奖.则顾客中奖的概率为$\frac{19}{20}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直角三角形的三边长都是整数且其面积与周长在数值上相等,那么这样的直角三角形有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,若直线l的极坐标方程为3ρcosθ+4ρsinθ-8=0,椭圆C的参数方程为$\left\{\begin{array}{l}{x=2cos\frac{π}{3}cosφ}\\{y=2sin\frac{π}{3}sinφ}\end{array}\right.$(φ为参数).
(1)求出直线l的直角坐标方程和C的普通方程;
(2)求C上的点到直线l的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=ax-lnx在(2,+∞)上单调递增,则实数a的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.$[{\frac{1}{2},+∞})$D.$[{\frac{1}{4},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆x2+y2+2x+3y+1=0与圆x2+y2+4x+3y+2=0的位置关系是(  )
A.外切B.内切C.相交D.内含

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中正确命题的个数是(  )
(1)cosα≠0是$α≠2kπ+\frac{π}{2}(k∈Z)$的充分必要条件
(2)f(x)=|sinx|+|cosx|,则f(x)最小正周期是π
(3)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变
(4)设随机变量ζ服从正态分布N(0,1),若P(ζ>1)=p,则$P(-1<ζ<0)=\frac{1}{2}-p$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若(ax-l)6展开式中x3的系数为20,则a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定点A($\sqrt{2}$,1),动点M(x,y)的横、纵坐标同时满足三个条件:0≤x≤$\sqrt{2}$,y≤2,ax-y≤0,则$\overrightarrow{OA•}$$\overrightarrow{OM}$的最大值为4的充分不必要条件是(  )
A.a≥0B.1≤a≤$\sqrt{3}$C.a≤$\sqrt{2}$D.0≤a≤$\sqrt{2}$

查看答案和解析>>

同步练习册答案