精英家教网 > 高中数学 > 题目详情

【题目】已知圆 ,圆
(1)求两圆公共弦所在直线的方程;
(2)直线ι过点(4,﹣4)与圆C1相交于A,B两点,且 ,求直线ι的方程.

【答案】
(1)解:因为圆 ,圆

作差得,两圆公共弦所在直线的方程为:2x﹣y+4=0.


(2)解:设过点(4,﹣4)的直线斜率为k,所以所求直线方程为:y+4=k(x﹣4),即kx﹣y﹣4k﹣4=0.

,的圆心(2,1),半径为:

因为圆心距、半径、半弦长满足勾股定理,所以弦心距为: =2;

所以 ,k=﹣ ,令一条直线斜率不存在,

直线方程为:x=4或21x+20y+4=0

所求直线方程为:x=4或21x+20y+4=0.


【解析】(1)利用圆系方程直接求出两圆公共弦所在直线的方程即可.(2)设出直线方程,利用圆心到直线的距离、半径、半弦长满足勾股定理求出直线的斜率,即可得到直线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若对于任一实数x,f(x)与g(x)至少有一个为负数,则实数m的取值范围是(
A.(﹣4,﹣1)
B.(﹣4,0)
C.(0,
D.(﹣4,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: 所得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据按从小到大顺序排列,得到﹣1,0,4,x,7,14中位数为5,则这组数据的平均数为 , 方差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E为PC的中点,M为AB的中点,点F在PA上,且2PF=FA.

(1)求证:BE⊥平面PAC;
(2)求证:CM∥平面BEF;
(3)求平面ABC与平面BEF所成的二面角的平面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】多面体 在平面上的射影是线段的中点.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是一个求20个数的平均数的程序,在横线上应填 ( )

A.i>20
B.i<20
C.i>=20
D.i<=20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知左、右焦点分别为的椭圆与直线相交于两点,使得四边形为面积等于的矩形.

1求椭圆的方程;

2过椭圆上一动点(不在轴上)作圆的两条切线,切点分别为,直线与椭圆交于两点, 为坐标原点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知cosx=﹣ ,x∈(0,π)
(1)求cos(x﹣ )的值;
(2)求sin(2x+ )的值.

查看答案和解析>>

同步练习册答案