精英家教网 > 高中数学 > 题目详情
(2013•延庆县一模)A是由定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
31+x
,x∈[1,2],证明:φ(x)∈A;
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.
分析:(I)根据φ(2x)=
31+2x
单调增的性质,得x∈[1,2]时1<
33
≤φ(2x)≤
35
<2,从而得到φ(2x)∈(1,2);再根据分子有理化,整理得|φ(2x1)-φ(2x2)|=|x1-x2|•
2
3(1+2x1)2
+
3(1+2x1)(1+2x1)
+
3(1+2x2)2
,从而令
2
3(1+2x1)2
+
3(1+2x1)(1+2x1)
+
3(1+2x2)2
=L,得0<L<1满足|φ(2x1)-φ(2x2)|≤L|x1-x2|.由以上两条可得φ(x)∈A成立;
(II)反证法,假设满足条件的x0不是唯一的,则存在两个x0x0/∈(1,2)且x0x0/,使得x0=φ(2x0),x0/=φ(2x0/),根据(I)的结论进行推理得到|x0-x0/|≤L|x1-x2|,所以L≥1与定义0<L<1矛盾,从而说明假设不成立,可得满足x0∈(1,2)且x0=φ(2x0)的x0是唯一的.
解答:解:(Ⅰ)对任意x∈[1,2],φ(2x)=
31+2x

33
≤φ(2x)≤
35
,且1<
33
35
<2,
∴φ(2x)∈(1,2)满足(1)的条件;
对任意的x1,x2∈[1,2],|φ(2x1)-φ(2x2)|
=|x1-x2|•
2
3(1+2x1)2
+
3(1+2x1)(1+2x1)
+
3(1+2x2)2

∵3<
3(1+2x1)2
+
3(1+2x1)(1+2x2)
+
3(1+2x2)2

所以0<
2
3(1+2x1)2
+
3(1+2x1)(1+2x1)
+
3(1+2x2)2
2
3

2
3(1+2x1)2
+
3(1+2x1)(1+2x1)
+
3(1+2x2)2
=L,则0<L<1,
可得|φ(2x1)-φ(2x2)|≤L|x1-x2|,满足(2)的条件
所以φ(x)∈A成立.…(8分)
(Ⅱ)反证法:
设存在两个x0x0/∈(1,2)且x0x0/,使得x0=φ(2x0),x0/=φ(2x0/),则
由(I)的结论,得|φ(2x0)-φ(2x0/)|≤L|x1-x2|,
得|x0-x0/|≤L|x1-x2|,所以L≥1,与定义0<L<1矛盾,故假设不成立,
可得不存在两个x0x0/∈(1,2)且x0x0/,使得x0=φ(2x0),x0/=φ(2x0/),
因此如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.…(13分)
点评:本题给出满足特殊对应法则,要求我们判断φ(x)满足此对应法则,且对满足条件的函数中若x0=φ(2x0)的x0唯一性加以讨论.着重考查了不等式的性质、反证法的证明思想和函数恒成立的讨论等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•延庆县一模)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5
日均浓度
0~35 35~75 75~115 115~150 150~250 >250
空气质量级别 一级 二级 三级 四级 五级 六级
空气质量类型 轻度污染 中度污染 重度污染 严重污染
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知函数f(x)=ax3+bx2-2(a≠0)有且仅有两个不同的零点x1,x2,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)已知函数f(x)=
log4x, x>0
3x, x≤0
,则f[f(
1
16
)]
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•延庆县一模)如图,四棱锥P-ABCD的底面ABCD为菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E为PA的中点.
(Ⅰ)求证:PC∥平面EBD;
(Ⅱ)求三棱锥C-PAD的体积VC-PAD
(Ⅲ)在侧棱PC上是否存在一点M,满足PC⊥平面MBD,若存在,求PM的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案