精英家教网 > 高中数学 > 题目详情

【题目】共享单车入住泉州一周年以来,因其“绿色出行,低碳环保”的理念而备受人们的喜爱,值此周年之际,某机构为了了解共享单车使用者的年龄段,使用频率、满意度等三个方面的信息,在全市范围内发放份调查问卷,回收到有效问卷份,现从中随机抽取份,分别对使用者的年龄段、~岁使用者的使用频率、~岁使用者的满意度进行汇总,得到如下三个表格:

(Ⅰ)依据上述表格完成下列三个统计图形:

(Ⅱ)某城区现有常住人口万,请用样本估计总体的思想,试估计年龄在岁~岁之间,每月使用共享单车在~次的人数.

【答案】(Ⅰ)见解析(Ⅱ)年龄在岁之间,每月使用共享单车在次之间的人数约为万人

【解析】试题分析:(1)根据数据及各表格对应关系填表或画图(2)先根据年龄在岁~岁之间的有人,占总抽取人数在一半,得某城区万人口中年龄在岁~岁之间的约有(万人),再根据年龄在岁~岁之间每月使用共享单车在次之间的有人,占总抽取人数的,得年龄在岁之间,每月使用共享单车在次之间的人数约为万人.

试题解析:解:(Ⅰ)

(Ⅱ)由表(Ⅰ)可知:年龄在岁~岁之间的有人,占总抽取人数在一半,

用样本估计总体的思想可知,

某城区万人口中年龄在岁~岁之间的约有(万人):

又年龄在岁~岁之间每月使用共享单车在次之间的有人,占总抽取人数的

用样本估计总体的思想可知,城区年龄在岁之间万人中每月使用共享单车在次之间的约有(万人)

所以年龄在岁之间,每月使用共享单车在次之间的人数约为万人

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求函数f(x)的定义域;
(2)求f(﹣1),f(12)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>0, 是R上的偶函数.
(1)求a的值;
(2)证明:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.
(1)分别写出用x表示y和S的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提高市场销售业绩,某公司设计两套产品促销方案(方案1运作费用为元/件;方案2的的运作费用为元/件),并在某地区部分营销网点进行试点(每个试点网点只采用一种促销方案),运作一年后,对比该地区上一年度的销售情况,分别统计相应营销网点个数,制作相应的列联表如下表所示.

无促销活动

采用促销方案1

采用促销方案2

本年度平均销售额不高于上一年度平均销售额

48

11

31

90

本年度平均销售额高于上一年度平均销售额

52

69

29

150

100

80

60

(Ⅰ)请根据列联表提供的信息,为该公司今年选择一套较为有利的促销方案(不必说明理由);

(Ⅱ)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的组售价(单位:元/件,整数)和销量(单位:件)()如下表所示:

售价

销量

(ⅰ)请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;

(ⅱ)根据所选回归模型,分析售价定为多少时?利润可以达到最大.

参考公式:相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题的说法错误的是(
A.命题“若x2﹣3x+2=0,则 x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”.
B.“x=1”是“x2﹣3x+2=0”的充分必要条件.
C.命题p:“?x∈R,sinx+cosx≤ ”是真命题
D.若¬(p∧q)为真命题,则p、q至少有一个为假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为互相垂直的单位向量, 的夹角为锐角,则实数λ的取值范围是(
A.(﹣∞,﹣2)
B.( ,+∞)
C.(﹣2,
D.(﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足为等比数列,且

1)求

2)设,记数列的前项和为

①求

②求正整数 k,使得对任意均有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

同步练习册答案