精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin(2x+ ),f′(x)是f(x)的导函数,则函数y=2f(x)+f′(x)的一个单调递减区间是(
A.[ ]
B.[﹣ ]
C.[﹣ ]
D.[﹣ ]

【答案】A
【解析】解:函数f(x)=sin(2x+ ),f′(x)是f(x)的导函数, 则函数y=2f(x)+f′(x)=2sin(2x+ )+2cos(2x+
= sin(2x+ + )=2 sin(2x+ ),
由2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,
可得:kπ+ ≤x≤kπ+ ,k∈Z,
所以函数的一个单调减区间为:[ ].
故选:A.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握正弦函数的单调性(正弦函数的单调性:在上是增函数;在上是减函数)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)=(2x2﹣ax﹣6a2)ln(x﹣a)的值域是[0,+∞),则实数a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=2an﹣2n+1(n∈N*),则其通项公式an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的左、右焦点为F1 , F2 , 设点F1 , F2与椭圆短轴的一个端点构成斜边长为4的直角三角形.
(1)求椭圆C的标准方程;
(2)设A,B,P为椭圆C上三点,满足 = + ,记线段AB中点Q的轨迹为E,若直线l:y=x+1与轨迹E交于M,N两点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax+ ,且f(x)+f( )=0,其中a,b为常数.
(1)若函数f(x)的图象在x=1的切线经过点(2,5),求函数的解析式;
(2)已知0<a<1,求证:f( )>0;
(3)当f(x)存在三个不同的零点时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非零向量 的夹角为 ,且满足| |=λ| |(λ>0),向量组 由一个 和两个 排列而成,向量组 由两个 和一个 排列而成,若 + + 所有可能值中的最小值为4 2 , 则λ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣1|﹣|2x+1|的最大值为m.
(Ⅰ)作出函数f(x)的图象;
(Ⅱ)若a2+2c2+3b2=m,求ab+2bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 上两个不同的点A,B关于直线y=mx+ 对称.
(1)求实数m的取值范围;
(2)求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四菱锥P﹣ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.
(I)求证:PA⊥AB;
(II)求直线AD与平面PCD所成角的大小.

查看答案和解析>>

同步练习册答案