精英家教网 > 高中数学 > 题目详情

【题目】瑞士数学家、物理学家欧拉发现任一凸多面体(即多面体内任意两点的连线都被完全包含在该多面体中,直观上讲是指没有凹陷或孔洞的多面体)的顶点数V棱数E及面数F满足等式,这个等式称为欧拉多面体公式,被认为是数学领域最漂亮、简洁的公式之一,现实生活中存在很多奇妙的几何体,现代足球的外观即取自一种不完全正多面体,它是由m块黑色正五边形面料和块白色正六边形面料构成的.则

A.20B.18C.14D.12

【答案】D

【解析】

设足球顶点数V.棱数E及面数F,根据足球的特点,分别求得FVE,代入欧拉多面体公式求解.

依题意,设足球顶点数V.棱数E及面数F

每条棱被两个面公用,故棱数

每个顶点3条棱公用,故顶点数

所以由,得

解得

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是一个由正四棱锥和正四棱柱构成的组合体,正四棱锥的侧棱长为6为正四棱锥高的4倍.当该组合体的体积最大时,点到正四棱柱外接球表面的最小距离是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知若满足有四个,则的取值范围为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌布娃娃做促销活动:已知有50个布娃娃,其中一些布娃娃里面有奖品,参与者可以先在50个布娃娃中购买5个,看完5个布娃娃里面的结果再决定是否将剩下的布娃娃全部购买,设每个布娃娃有奖品的概率为,且各个布娃娃是否有奖品相互独立.

1)记5个布娃娃中有1个有奖品的概率为,当时,的最大值,求

2)假如这5个布娃娃中恰有1个有奖品,以上问中的作为p的值.已知每次购买布娃娃需要2元,若有中奖,则中奖者每次可得奖金15.以最终奖金的期望作为决策依据,是否该买下剩下所有的45个布娃娃;

3)若已知50件布娃娃中有10个布娃娃有奖品,从这堆布娃娃中任意购买5个,若抽到k个有奖品可能性最大,求k的值.k为正整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具厂拟定生产两款新毛绒玩具样品,一款为毛绒小猪,另一款为毛绒小狗.由设计图知,生产这两款毛绒玩具均需相同材质的填充物、长毛绒、天鹅绒,且每个毛绒小猪需填充物、长毛绒、天鹅绒,每个毛绒小狗需填充物、长毛绒、天鹅绒.现有所需填充物、长毛绒、天鹅绒,若每个毛绒小猪与毛绒小狗的出厂价分别为64元、36元,则生这批毛绒玩具的最大销售额为_______元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知可导函数fx)的定义域为,且满足,则对任意的,“”是“”的( )

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,四边形ABCD为平行四边形,且点在底面上的投影H恰为CD的中点.

1)棱BC上存在一点N,使得AD⊥平面,试确定点N的位置,说明理由;

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有6名选手参加才艺比赛,其中男、女选手各3名,且3名男选手分别表演歌唱、舞蹈和魔术,3名女选手分别表演歌唱、舞蹈和魔术,若要求相邻出场的选手性别不同且表演的节目不同,则不同的出场方式的种数为(

A.6B.12C.18D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数处取得极大值或极小值,则称为函数的极值点设函数

(1)若函数上无极值点,求的取值范围;

(2)求证:对任意实数,在函数的图象上总存在两条切线相互平行;

(3)当时,若函数的图象上存在的两条平行切线之间的距离为4,问;这样的平行切线共有几组?请说明理由

查看答案和解析>>

同步练习册答案