精英家教网 > 高中数学 > 题目详情
14.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,将y=f(x)的图象向右平移$\frac{π}{4}$个单位长度后得到函数y=g(x)的图象.
(1)求函数y=g(x)的解析式;
(2)在△ABC中,角A,B,C满足2sin2$\frac{A+B}{2}$=g(C+$\frac{π}{3}$)+1,且其外接圆的半径R=2,求△ABC的面积的最大值.

分析 (1)由图知周期T,利用周期公式可求ω,由f($\frac{π}{12}$)=1,结合范围|φ|<$\frac{π}{2}$,可求φ的值,进而利用三角函数图象变换的规律即可得解.
(2)利用三角函数恒等变换的应用及三角形内角和定理化简已知可得cosC=-$\frac{1}{2}$,进而可求C,由正弦定理解得c的值,进而由余弦定理,基本不等式可求ab≤4,利用三角形面积公式即可得解面积的最大值.

解答 (本题满分为12分)
解:(1)由图知$\frac{2π}{ω}$=4($\frac{π}{12}$+$\frac{π}{6}$),解得ω=2,
∵f($\frac{π}{12}$)=sin(2×$\frac{π}{12}$+φ)=1,
∴2×$\frac{π}{12}$+φ=2kπ+$\frac{π}{2}$,k∈Z,即φ=2kπ+$\frac{π}{3}$,k∈Z,
由于|φ|<$\frac{π}{2}$,因此φ=$\frac{π}{3}$,…(3分)
∴f(x)=sin(2x+$\frac{π}{3}$),
∴f(x-$\frac{π}{4}$)=sin[2(x-$\frac{π}{4}$)+$\frac{π}{3}$]=sin(2x-$\frac{π}{6}$),
即函数y=g(x)的解析式为g(x)=sin(2x-$\frac{π}{6}$),…(6分)
(2)∵2sin2$\frac{A+B}{2}$=g(C+$\frac{π}{3}$)+1,
∴1-cos(A+B)=1+sin(2C+$\frac{π}{2}$),
∵cos(A+B)=-cosC,sin(2C+$\frac{π}{2}$)=cos2C,
cosC=cos2C,即cosC=2cos2C-1,
所以cosC=-$\frac{1}{2}$或1(舍),可得:C=$\frac{2π}{3}$,…(8分)
由正弦定理得$\frac{c}{sinC}=2R=4$,解得c=2$\sqrt{3}$,
由余弦定理得cosC=-$\frac{1}{2}$=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
∴a2+b2=12-ab≥2ab,ab≤4,(当且仅当a=b等号成立),
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\sqrt{3}$,
∴△ABC的面积最大值为$\sqrt{3}$.…(12分)

点评 本题主要考查了三角函数周期公式,三角函数图象变换的规律,三角函数恒等变换的应用,三角形内角和定理,正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了数形结合思想和转化思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{m}$-y2=1的一个焦点与抛物线y2=8x焦点相同,则此双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{5}}{5}$C.2D.$\frac{2\sqrt{15}}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:x2=2py(p>0),圆O:x2+y2=1.
(1)若抛物线C的焦点F在圆上,且A为 C和圆 O的一个交点,求|AF|;
(2)若直线l与抛物线C和圆O分别相切于点M,N,求|MN|的最小值及相应p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC的外接圆的圆心为O,半径为2,且$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,则向量$\overrightarrow{CA}$在向量$\overrightarrow{CB}$方向上的投影为(  )
A.3B.$\sqrt{3}$C.-3D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=sin(x+φ)是偶函数,则φ可取一个值为(  )
A.B.-$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,则f(f($\frac{1}{8}$))=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足$\left\{{\begin{array}{l}{x-2y+1≤0}\\{2x-y≥0}\\{x≤1}\end{array}}\right.$,则由点P(2x-y,x+y)形成的区域的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知原命题“若a>b>0,则$\frac{1}{a}$<$\frac{1}{b}$”,则原命题,逆命题,否命题,逆否命题中真命题个数为(  )
A.0B.1C.2D.4

查看答案和解析>>

同步练习册答案