精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)满足f(log2x)=$\sqrt{{x}^{2}-2x+1}$,若a<b<c,且f(a)>f(c)>f(b),则(  )
A.a<0,b<0,c<0B.a<0,b≥0,c>0C.2-a<2cD.2a+2c<2

分析 先求出函数f(x)的解析式,画出函数的图象,结合函数的单调性判断即可.

解答 解:∵f(log2x)=$\sqrt{{x}^{2}-2x+1}$=|x-1|,
令${log}_{2}^{x}$=a,则x=2a
∴f(a)=|2a-1|,
∴f(x)=|2x-1|=$\left\{\begin{array}{l}{{2}^{x}-1,x≥0}\\{1{-2}^{x},x<0}\end{array}\right.$,
画出函数f(x)的图象,如图示:
若a<b<c,且f(a)>f(c)>f(b),
若a<b<c,且f(a)>f(c)>f(b),
则a<0,b≥0,c>0,
故选:B.

点评 本题考查了对数函数、指数函数的性质,考查函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列结论错误的是(  )
A.命题“若x2-3x-4=0,则x=4”的逆否命题是“若x≠4,则x2-3x-4≠0”
B.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题
C.“x=4”是“x2-3x-4=0”的充分条件
D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)定义在[-4,4]上的奇函数,且在[-4,4]上单调递增,若f(m+1)+f(m-3)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.水平相当的甲、乙两支篮球队进行篮球比赛,规定“三场两胜制”,即先赢两场者胜且整个比赛结束,分别在下列条件下.求乙队获胜的概率:
(1)若甲队先赢-场;
(2)若乙队先赢一场.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知tanα=3,求:
(1)$\frac{sin(α-3π)-2cos(\frac{2015π}{2}+α)}{-sin(-α)+cos(π+α)}$.
(2)2sin2α+sinαcosα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若α∈[0,2π),cos$\frac{7π}{6}$=cosα,利用余弦线可以求得α=$\frac{5π}{6}$(α≠$\frac{7π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=|3sinx+4cosx|的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知sinα+cosα=-$\frac{1}{5}$.
(1)求sin($\frac{π}{2}$+α)cos($\frac{π}{2}$-α)的值;
(2)若$\frac{π}{2}$<α<π,求$\frac{1}{sin(π-α)}$+$\frac{1}{cos(π-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l:2x-y-1=0,动点P(x,y)在直线l上.
(1)若A(0,4),B(-2,0),求|PA|+|PB|的最小值并求此时点P的坐标;
(2)若A(0,4),C(4,1),求|PC|-|PA|的最大值并求此时点P的坐际.

查看答案和解析>>

同步练习册答案