精英家教网 > 高中数学 > 题目详情

【题目】给定数列,记该数列前中的最大项为,即,该数列后中的最小项为,记

1)对于数列:3471,求出相应的

2)若是数列的前项和,且对任意,有,其中为实数,.

(ⅰ)设,证明:数列是等比数列;

(ⅱ)若数列对应的满足对任意的正整数恒成立,求实数的取值范围.

【答案】1;(2)(ⅰ)证明见解析;(ⅱ).

【解析】

1)由定义可分别求得时的取值,从而得到

2)(ⅰ)当时,根据,结合已知等式求得,进而得到,且;当时,利用可得到,结合通项可整理得到,从而结论得证;

(ⅱ)由(ⅰ)可结合等比数列通项公式求得;根据的定义和大小关系以及,可确定,从而得到,代入通项公式整理化简可得,解不等式求得结果即可.

1)由题意得:

2)(ⅰ)当时,

时,

数列是以为首项,为公比的等比数列

(ⅱ)由(ⅰ)得:

对任意的恒成立

即:

,解得:

的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆)的左右两个焦点分别是在椭圆上运动.

1)若对有最大值为120°,求出的关系式;

2)若点是在椭圆上位于第一象限的点,过点作直线的垂线,过作直线的垂线,若直线的交点在椭圆上,求点的坐标;

3)若设,在(2)成立的条件下,试求出两点间距离的函数,并求出的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1F2为双曲线b0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°,圆O的方程是x2+y2=b2

1)求双曲线C的方程;

2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1P2,求的值;

3)过圆O上任意一点Q作圆O的切线l交双曲线CAB两点,AB中点为M,求证:|AB|=2|OM|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数x和任意,恒有,则实数a的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正项数列满足:,则称此数列为“比差等数列”.

1)试写出一个“比差等数列”的前项;

2)设数列是一个“比差等数列”,问是否存在最小值,如存在,求出最小值;如不存在,请说明理由;

3)已知数列是一个“比差等数列”,为其前项的和,试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系.

1)求曲线的标准方程;

2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,五边形中,分别是线段的中点,且,现沿翻折,使得,得到的图形如图(2)所示.

图(1) 图(2)

(1)证明:平面

(2)若平面与平面所成角的平面角的余弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:已知函数上的最小值为,若恒成立,则称函数上具有性质.

)判断函数上是否具有性质?说明理由.

)若上具有性质,求的取值范围.

查看答案和解析>>

同步练习册答案