【题目】给定数列,记该数列前项中的最大项为,即,该数列后项中的最小项为,记,;
(1)对于数列:3,4,7,1,求出相应的,,;
(2)若是数列的前项和,且对任意,有,其中为实数,且,.
(ⅰ)设,证明:数列是等比数列;
(ⅱ)若数列对应的满足对任意的正整数恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆()的左右两个焦点分别是、,在椭圆上运动.
(1)若对有最大值为120°,求出、的关系式;
(2)若点是在椭圆上位于第一象限的点,过点作直线的垂线,过作直线的垂线,若直线、的交点在椭圆上,求点的坐标;
(3)若设,在(2)成立的条件下,试求出、两点间距离的函数,并求出的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F1、F2为双曲线(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°,圆O的方程是x2+y2=b2.
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值;
(3)过圆O上任意一点Q作圆O的切线l交双曲线C于A、B两点,AB中点为M,求证:|AB|=2|OM|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若正项数列满足:,则称此数列为“比差等数列”.
(1)试写出一个“比差等数列”的前项;
(2)设数列是一个“比差等数列”,问是否存在最小值,如存在,求出最小值;如不存在,请说明理由;
(3)已知数列是一个“比差等数列”,为其前项的和,试证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系.
(1)求曲线的标准方程;
(2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)所示,五边形中,,,分别是线段的中点,且,现沿翻折,使得,得到的图形如图(2)所示.
图(1) 图(2)
(1)证明:平面;
(2)若平面与平面所成角的平面角的余弦值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(1) 求抛物线的方程;
(2) 当点为直线上的定点时,求直线的方程;
(3) 当点在直线上移动时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:已知函数在上的最小值为,若恒成立,则称函数在上具有“”性质.
()判断函数在上是否具有“”性质?说明理由.
()若在上具有“”性质,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com