【题目】如图所示,正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.
求证:(1)E,C,D1,F四点共面;
(2)CE,D1F,DA三线共点.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,,Sn=n2an-n(n-1),n=1,2,…
(1)证明:数列{Sn}是等差数列,并求Sn;
(2)设,求证 :b1+b2+…+bn<1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象有两个不同的公共点,则实数a的值为( )
A. n(n∈Z) B. 2n(n∈Z)
C. 2n或(n∈Z) D. n或(n∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x+1,x∈N*.若x0,n∈N*,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.则函数f(x)的“生成点”共有( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x-1|+|2x-a|+a,x∈R.
(1)当a=3时,求不等式f(x)>7的解集;
(2)对任意x∈R恒有f(x)≥3,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥P—ABC中,PC底面ABC,AB=BC,D、F分别为AC、PC的中点,DEAP于E。(1)求证:AP平面BDE;(2)求证:平面BDE平面BDF;(3)若AE:EP=1:2,求截面BEF分三棱锥P—ABC所成上、下两部分的体积比。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的平面图形中,ABCD是边长为2的正方形,△HDA和△GDC都是以D为直角顶点的等腰直角三角形,点E是线段GC的中点.现将△HDA和△GDC分别沿着DA,DC翻折,直到点H和G重合为点P.连接PB,得如图的四棱锥.
(Ⅰ)求证:PA//平面EBD;
(Ⅱ)求二面角大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知函数f(x)(x∈R)是奇函数,且当x>0时,f(x)=2x-1,求函数f(x)的解析式.
(2)已知x+y=12,xy=9且x<y,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com