精英家教网 > 高中数学 > 题目详情

已知点(1,0)在直线的两侧,则下列说法

  (1)                         

(2)时,有最小值,无最大值

(3)存在某一个正实数,使得恒成立        

(4),, 则的取值范围为(-

其中正确的是                  (把你认为所有正确的命题的序号都填上)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点M在直线l:y=2的下方,点M到直l的距离与定点N(0,-1)的距离之和为4,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,经过点(1,e),其中e为椭圆的离心率.且椭圆C与直线y=x+
3
有且只有一个交点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设不经过原点的直线l与椭圆C相交与A,B两点,第一象限内的点P(1,m)在椭圆上,直线OP平分线段AB,求:当△PAB的面积取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)=e2+ax,g(x)=exlnx
(1)设曲线y=f(x)在x=1处得切线与直x+(e-1)y=1垂直,求a的值.
(2)若对任意实x≥0f(x)>0恒成立,确定实数a的取值范围.
(3)a=1时,是否存x0∈[1,e],使曲线C:y=g(x)-f(x)在点x=x0处得切线与y轴垂直?若存在求x0的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直l与C相交于A、B两点,点A关于x轴的对称点为D。 (1)证明:点F在直线BD上;
(2)设=,求△BDK的内切圆M的方程。

查看答案和解析>>

同步练习册答案