精英家教网 > 高中数学 > 题目详情

【题目】如图(1)所示,在中,边上的高,且的中点.现沿进行翻折,使得平面平面,得到的图形如图(2)所示.

1)求证:

2)求直线与平面所成角的正弦值.

【答案】1)证明见解析(2

【解析】

1)由题意,先根据面面垂直的性质定理,得到平面,再由线面垂直的性质,即可得出

2)以为原点,所在的直线分别为轴建立空间坐标系,设,求出直线的方向向量,以及平面的一个法向量,由向量夹角公式,以及线面角与向量夹角的关系,即可得出结果.

1)由图(1)知,在图(2)中,

∵平面平面,平面平面平面

平面,又平面

2)以为原点,所在的直线分别为轴建立如图所示的空间坐标系,

不妨设,则

设平面的法向量,则,即

,得,则是平面的一个法向量,

设直线与平面所成的角是

故直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,沿河有两城镇,它们相距20千米,以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送),依据经验公式,建厂的费用为(万元),表示污水流量,铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇和城镇的污水流量分别为两城镇连接污水处理厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排入河中;请解答下列问题:

1)若在城镇和城镇单独建厂,共需多少总费用?

2)考虑联合建厂可能节约总投资,设城镇到拟建厂的距离为千米,求联合建厂的总费用的函数关系式,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间有50名工人,要完成150件产品的生产任务,每件产品由3A 型零件和1B 型零件配套组成.每个工人每小时能加工5A 型零件或者3B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一中型号的零件.设加工A 型零件的工人人数为x名(x∈N*

1)设完成A 型零件加工所需时间为小时,写出的解析式;

2)为了在最短时间内完成全部生产任务,x应取何值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为椭圆的下顶点,椭圆长半轴的长等于椭圆的短轴长,且椭圆经过点.

1)求椭圆的方程;

2)过点的直线与直线交于点,与椭圆交于,点关于原点的对称点为,直线交直线交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机支付也称为移动支付,是指允许用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.随着信息技术的发展,手机支付越来越成为人们喜欢的支付方式.某机构对某地区年龄在1575岁的人群是否使用手机支付的情况进行了调查,随机抽取了100人,其年龄频率分布表和使用手机支付的人数如下所示:(年龄单位:岁)

年龄段

[1525

[2535

[3545

[4555

[5565

[6575]

频率

0.1

0.32

0.28

0.22

0.05

0.03

使用人数

8

28

24

12

2

1

1)若以45岁为分界点,根据以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.001的前提下认为使用手机支付与年龄有关?

年龄低于45

年龄不低于45

使用手机支付

不使用手机支付

2)若从年龄在[5565),[6575]的样本中各随机选取2人进行座谈,记选中的4人中使用手机支付的人数为X,求随机变量X的分布列和数学期望.

参考数据:

PK2k0

0.025

0.010

0.005

0.001

k0

3.841

6.635

7.879

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,证明:有且只有一个零点;

)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点PQ分别为A1B1BC的中点.

(1)求异面直线BPAC1所成角的余弦值;

(2)求直线CC1与平面AQC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数是偶函数,求实数的值;

2)若函数,关于的方程有且只有一个实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知抛物线Cy22pxp0)的焦点为F,过F垂直于x轴的直线与C相交于AB两点,△AOB的面积为2

1)求抛物线C的方程;

2)若过P0)的直线与C相交于MN两点,且2,求直线l的方程.

查看答案和解析>>

同步练习册答案