精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,它的体积是底面△ABC中,∠BAC=90°,AB=4AC=3在底面的射影是D,且DBC的中点.

(1)求侧棱与底面ABC所成角的大小;

(2)求异面直线所成角的大小.

【答案】

【解析】

,就是侧棱与底面所成的角,运用棱柱的体积公式和解直角三角形,即可得到所求值.

的中点E,连接, ,则(或其补角)为所求的异面直线所成角的大小,运用解直角三角形,计算即可得到所求值.

作图如下:

依题意得,

,

就是侧棱与底面所成的角,

,

,

由D为中点,

即有.

即有,

所以.

即侧棱与底面所成角为.

中点,连接,

(或其补角)为所求的异面直线所成角的大小.

,

,

,

所以,

,

,

所以所求异面直线所成角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若恒成立,求实数的最大值;

2)设函数,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,证明:当时,

(2)若只有一个零点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处的切线与直线平行,求实数的值;

(2)试讨论函数在区间上的最大值;

(3)若时,函数恰有两个零点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某地中小学生的近视形成原因,教育部门委托医疗机构对该地所有中小学生的视力做了一次普查.现该地中小学生人数和普查得到的近视情况分别如图1和图2所示.

(1)求该地中小学生的平均近视率(保留两位有效数字);

(2)为调查中学生用眼卫生习惯,该地用分层抽样的方法从所有初中生和高中生中确定5人进行问卷调查,再从这5人中随机选取2人继续访谈,则此2人全部来自高中年级的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为:为参数),以平面直角坐标系的原点为极点,轴的非负半轴为极轴建立极坐标系,将曲线绕极点顺时针旋转后得到曲线的曲线记为.

1)求曲线的极坐标方程;

2)设的交点为,求的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点为,过的直线交两点,过作与轴垂直的直线交直线于点.设,已知当时,

(Ⅰ)求椭圆的方程;

(Ⅱ)求证:无论如何变化,直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三(1)班在一次语文测试结束后,发现同学们在背诵内容方面失分较为严重.为了提升背诵效果,班主任倡议大家在早、晚读时间站起来大声诵读,为了解同学们对站起来大声诵读的态度,对全班50名同学进行调查,将调查结果进行整理后制成下表:

考试分数

频数

5

10

15

5

10

5

赞成人数

4

6

9

3

6

4

1)欲使测试优秀率为30%,则优秀分数线应定为多少分?

2)依据第1问的结果及样本数据研究是否赞成站起来大声诵读的态度与考试成绩是否优秀的关系,列出2×2列联表,并判断是否有90%的把握认为赞成与否的态度与成绩是否优秀有关系.

参考公式及数据:.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若存在两个极值点,且关于的方程恰有三个实数根,求证:.

查看答案和解析>>

同步练习册答案