精英家教网 > 高中数学 > 题目详情

如图, 已知椭圆的长轴为,过点的直线轴垂直.直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率.

(1)求椭圆的标准方程;

(2)设是椭圆上异于的任意一点,轴,为垂足,延长到点使得,连结延长交直线于点的中点.试判断直线与以为直径的圆的位置关系.

 


解:(1)将整理得

       解方程组得直线所经过的定点(0,1),所以

      由离心率

所以椭圆的标准方程为.--------------------6分

(2)设,则

,∴.∴

点在以为圆心,2为半径的的圆上.即点在

为直径的圆上.

,∴直线的方程为

,得.又的中点,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2003•北京)如图,已知椭圆的长轴A1A2与x轴平行,短轴B1B2在y轴上,中心M(0,r)(b>r>0
(Ⅰ)写出椭圆方程并求出焦点坐标和离心率;
(Ⅱ)设直线y=k1x与椭圆交于C(x1,y1),D(x2,y2)(y2>0),直线y=k2x与椭圆次于G(x3,y3),H(x4,y4)(y4>0).求证:
k1x1x2
x1+x2
=
k1x3x4
x3+x4

(Ⅲ)对于(Ⅱ)中的在C,D,G,H,设CH交x轴于P点,GD交x轴于Q点,求证:|OP|=|OQ|
(证明过程不考虑CH或GD垂直于x轴的情形)

查看答案和解析>>

科目:高中数学 来源: 题型:

(03年北京卷理)(15分)

如图,已知椭圆的长轴轴平行,短轴轴上,中心

(Ⅰ)写出椭圆方程并求出焦点坐标和离心率;

(Ⅱ)设直线与椭圆交于),直线与椭圆次于).求证:

(Ⅲ)对于(Ⅱ)中的在,设轴于点,轴于点,求证:(证明过程不考虑垂直于轴的情形)

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆的长轴,离心率为坐标原点,过的直线轴垂直,是椭圆上异于的任意一点,为垂足,延长,使得,连接并延长交直线的中点

(1)求椭圆方程并证明点在以为直径的圆

(2)试判断直线与圆的位置关系

 


查看答案和解析>>

科目:高中数学 来源:2012-2013学年黑龙江高三上期末考试文科数学试卷(解析版) 题型:解答题

(本小题满分12分)如图,已知椭圆的长轴为,过点的直线轴垂直,直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率

(1)求椭圆的标准方程;

(2)设是椭圆上异于的任意一点,轴,为垂足,延长到点使得,连接并延长交直线于点的中点.试判断直线与以为直径的圆的位置关系.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二第一学期调研考试数学 题型:解答题

(本小题12分)如图,已知椭圆的长轴为,过点的直线轴垂直.直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率

(1)求椭圆的标准方程;

(2)设是椭圆上异于的任意一点,轴,为垂足,延长到点使得,连结延长交直线于点的中点.试判断直线与以为直径的圆的位置关系。

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案