精英家教网 > 高中数学 > 题目详情

【题目】如图,在空间直角坐标系中,已知正四棱锥的高,点分别在轴和轴上,且,点是棱的中点.

(1)求直线与平面所成角的正弦值;

(2)求二面角的余弦值.

【答案】(1);(2).

【解析】

1)求出和平面PAB的法向量,利用向量法能求出直线AM与平面PAB所成角的正弦值.(2)求平面PBC的法向量和平面PAB的法向量,利用向量法求二面角APBC的余弦值.

(1)P(0,0,2),A(0,-1,0),B(1,0,0),M(0,,1),

=(0,1,2),=(1,1,0),设平面PAB的法向量为=(x,y,z),

,取x=2,y=-2,z=1,=(2,-2,1),

=(0,,1),

,得cosθ=,

即线与平面所成角的正弦值为.

(2)C(0,1,0),P(0,0,2),B(1,0,0)

=(-1,0,2),=(-1,1,0),设平面PBC的法向量为=(x,y,z),

,取x=2,y=2,z=1,=(2,2,1),

,得cosα=

二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的首项,其前n项和为,对于任意正整数,都有.

(1)求数列的通项公式;

(2)设数列满足.

①若,求证:数列是等差数列;

②若数列都是等比数列,求证:数列中至多存在三项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与定直线相切.

(1)求动圆圆心的轨迹的方程;

(2)若是轨迹的动弦,且 分别以为切点作轨迹的切线,设两切线交点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体的8个顶点、12条棱的中点、6个侧面的中心点、1个体的中心点这27个点中,共面6点组的个数是( )。

A. 1320 B. 1326 C. 1332 D. 1336

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某媒体对男女延迟退休这一公众关注的问题进行了民意调查,下表是在某单位调查后得到的数据(人数)

赞同

反对

合计

5

6

11

11

3

14

合计

16

9

25

1)能否有90%以上的把握认为对这一问题的看法与性别有关?

2)进一步调查:

①从赞同男女延迟退休人中选出人进行陈述发言,求事件男士和女士各至少有人发言的概率;

②从反对男女延迟退休人中选出人进行座谈,设选出的人中女士人数为,求的分布列和数学期望.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为提倡节能减排,同时减轻居民负担,广州市积极推进一户一表工程非一户一表用户电费采用合表电价收费标准:一户一表用户电费采用阶梯电价收取,其11月到次年4月起执行非夏季标准如下:

第一档

第二档

第三档

每户每月用电量单位:度

电价单位:元

例如:某用户11月用电410度,采用合表电价收费标准,应交电费元,若采用阶梯电价收费标准,应交电费元.

为调查阶梯电价是否能到减轻居民负担的效果,随机调查了该市100户的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量单位:度为:88268370140440420520320230380

1)在答题卡中完成频率分布表,并绘制频率分布直方图;

根据已有信息,试估计全市住户11月的平均用电量同一组数据用该区间的中点值作代表

设某用户11月用电量为x,按照合表电价收费标准应交元,按照阶梯电价收费标准应交元,请用x表示,并求当时,x的最大值,同时根据频率分布直方图估计阶梯电价能否给不低于的用户带来实惠?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与定直线相切.

(1)求动圆圆心的轨迹的方程;

(2)若是轨迹的动弦,且 分别以为切点作轨迹的切线,设两切线交点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用神七宇宙飞船进行新产品搭载实验,计划搭载新产品AB,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:


产品A()

产品B()


研制成本与塔载
费用之和(万元/)

20

30

计划最大资
金额300万元

产品重量(千克/)

10

5

最大搭载
重量110千克

预计收益(万元/)

80

60


试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知可以表示为一个奇函数gx)与一个偶函数hx)之和,若不等式对于恒成立,则实数a的取值范围是________.

查看答案和解析>>

同步练习册答案