【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)求已知曲线和曲线交于两点,且,求实数的值.
科目:高中数学 来源: 题型:
【题目】已知一家公司生产某种品牌服装的年固定成本为万元,每生产千件需另投入万元.设该公司一年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的直角顶点在轴上,点为斜边的中点,且平行于轴.
(Ⅰ)求点的轨迹方程;
(Ⅱ)设点的轨迹为曲线,直线与的另一个交点为.以为直径的圆交轴于即此圆的圆心为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为.
(1)若出现故障的机器台数为,求的分布列;
(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?
(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象,给出下列四种说法,①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;
(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:)
(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为1的正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧(在正方形内,包括边界点)上的任意一点,则的取值范围是________; 若向量,则的最小值为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为, 为焦点是的抛物线上一点, 为直线上任一点, 分别为椭圆的上,下顶点,且三点的连线可以构成三角形.
(1)求椭圆的方程;
(2)直线与椭圆的另一交点分别交于点,求证:直线过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com