精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=xeax+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,
(1)求a,b的值;
(2)求f(x)的单调区间.

【答案】
(1)解:∵y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,

∴当x=2时,y=2(e﹣1)+4=2e+2,即f(2)=2e+2,

同时f′(2)=e﹣1,

∵f(x)=xeax+bx,

∴f′(x)=eax﹣xeax+b,

即a=2,b=e;


(2)解:∵a=2,b=e;

∴f(x)=xe2x+ex,

∴f′(x)=e2x﹣xe2x+e=(1﹣x)e2x+e,

f″(x)=﹣e2x﹣(1﹣x)e2x=(x﹣2)e2x

由f″(x)>0得x>2,由f″(x)<0得x<2,

即当x=2时,f′(x)取得极小值f′(2)=(1﹣2)e22+e=e﹣1>0,

∴f′(x)>0恒成立,

即函数f(x)是增函数,

即f(x)的单调区间是(﹣∞,+∞)


【解析】(1)求函数的导数,根据导数的几何意义求出函数的切线斜率以及f(2),建立方程组关系即可求a,b的值;(2)求函数的导数,利用函数单调性和导数之间的关系即可求f(x)的单调区间.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)= ,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体中,等边三角形所在平面垂直于矩形所在平面,又知//.

(1)若的中点为在线段上,//平面,求

(2)若平面与平面所成二面角的余弦值为,求直线与平面所成角的正弦值;

(3)若中点为,求在平面上的正投影。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m0p(x2)(x6)0q2mx2m.

(1)pq成立的必要不充分条件求实数m的取值范围;

(2) 成立的充分不必要条件求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=cos2x+asinx在区间( )是减函数,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=1﹣ ,g(x)=ln(ax2﹣3x+1),若对任意的x1∈[0,+∞),都存在x2∈R,使得f(x1)=g(x2)成立,则实数a的最大值为(
A.2
B.
C.4
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.

(1)求的方程;

(2)若动点在直线上,过作直线交椭圆两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数上单调递增,则

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:不等式x2+(m﹣1)x+1>0的解集为R;q:x∈(0,+∞),m≤x+ 恒成立.若“p且q”为假命题,“p或q”为真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案