精英家教网 > 高中数学 > 题目详情
如图,PA垂直于矩形ABCD所在的平面,,E、F分别是AB、PD的中点.

(Ⅰ)求证:平面PCE 平面PCD;
(Ⅱ)求三棱锥P-EFC的体积.
(Ⅰ)取中点G,连接
平面平面平面平面PCE 平面PCD(Ⅱ)

试题分析:(Ⅰ)取中点G,连接平面



(Ⅱ)由(2)知

点评:在第二小题中充分利用第一小题的结论,将三棱锥转换一个新的底面,此时高就能确定下来,简化了求解过程
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,棱长为2的正方体中,E,F满足

(Ⅰ)求证:EF//平面AB
(Ⅱ)求证:EF

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)三棱锥中,

(Ⅰ)求证:平面平面
(Ⅱ)若,且异面直线的夹角为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则下列命题中不正确的是(     )
A.若,则
B.若,则
C.若,则
D.若所成的角相等,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分6分)
如图,在边长为的菱形中,分别是的中点.

(1)求证: 面
(2)求证:平面⊥平面
(3)求与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果对于空间任意n(n≥2)条直线总存在一个平面α,使得这n条直线与平面α所成的角均相等,那么这样的n(  )
A.最大值为3B.最大值为4 C.最大值为5D.不存在最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧面是正三角形,且平面⊥底面

(1)求证:⊥平面
(2)求直线与底面所成角的余弦值;
(3)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体ABCDEF中,

(Ⅰ)求异面直线BF与DE所成角的余弦值;
(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体中,分别是的中点,则异面直线
所成的角的大小是____________.

查看答案和解析>>

同步练习册答案