精英家教网 > 高中数学 > 题目详情
(2010•南充一模)若A={x∈Z|2≤22-x<8},B={x∈R|丨x-1丨>1},则A∩(?RB)的元素个数为高(  )
分析:通过解不等式2≤22-x<8可求得集合A,通过解|x-1|>1可求得集合B,从而可得答案.
解答:解:由2≤22-x<8得1≤2-x<3,
∴-1<x≤1,又x∈Z,
∴x=0,1.
∴A={0,1};
由|x-1|>1得x>2或x<0,
∴B={x|x<0或x>2}.
∴A∩(?RB)={0,1};
∴A∩(?RB)的元素个数为2个.
故选C.
点评:本题考查交、并、补集的混合运算,考查解不等式的能力,求得集合A与集合B是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•南充一模)在直角坐标平面上,向量
OA
=(1,3)
OB
=(-3,1)
(O为原点)在直线l上的射影长度相等,且直线l的倾斜角为锐角,则l的斜率等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)函数f(x)=ax-1+logax(a>0且a≠1),在[1,2]上的最大值与最小值之和是a,则a的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)已知a,b,c都是正数,且a+2b+c=1,则
1
a
+
1
b
+
1
c
的最小值是
6+4
2
6+4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)已知两异面直线a,b所成的角为
π
3
,直线l分别与a,b所成的角都是θ,则θ的取值范围是
[
π
6
π
2
]
[
π
6
π
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南充一模)已知函数f(x)图象的两条对称轴x=0和x=1,且在x∈[-1,0]上f(x)单调递增,设a=f(3),b=f(
2
)
,c=f(2),则a,b,c的大小关系是(  )

查看答案和解析>>

同步练习册答案