精英家教网 > 高中数学 > 题目详情
(2012•泉州模拟)(1)选修4-2:矩阵与变换
若二阶矩阵M满足M
12
34
=
710
46

(Ⅰ)求二阶矩阵M;
(Ⅱ)把矩阵M所对应的变换作用在曲线3x2+8xy+6y2=1上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系xOy中,曲线C的参数方程为
x=2tcosθ
y=2sinθ
(t为非零常数,θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且
OA
OB
=10
(其中O为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-2|+|x-4|的最小值为m,实数a,b,c,n,p,q满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求证:
n4
a2
+
p4
b2
+
q4
c2
≥2
分析:(1)(Ⅰ)记矩阵A=
12
34
,可得|A|=-2,A-1,再根据M=
710
46
A-1
运算求得结果.
(Ⅱ)设二阶矩阵M所对应的变换为
x′
y′
=
12
11
x
y
,可得
x′=x+2y
y′=x+y
,代入曲线方程3x2+8xy+6y2=1,
化简可得x'2+2y'2=1.由可求得曲线的方程.
(2)(Ⅰ)由于t≠0,可将曲线C的方程化为普通方程:
x2
t2
+y2=4
,分t=±1和t≠±1时,分别讨论曲线
的形状.
(Ⅱ)求出直线l的普通方程,与曲线的方程联立方程组,由判别式大于零解得t2>3,利用韦达定理求出
x1+x2=-
8t2
1+t2
x1x2=
12t2
1+t2
,代入
OA
OB
=10
 求得t2=3,出现矛盾,从而得出结论.
(3)(Ⅰ)利用绝对值的几何意义可得 f(x)的最小值等于2,再由函数f(x)=|x-2|+|x-4|的最小值为m,从而得到m的值等于2.
(Ⅱ)把不等式左边化为[(
n2
a
)
2
+(
p2
b
)
2
+(
q2
c
)
2
]
 乘以(a2+b2+c2),再利用基本不等式证得结论.
解答:(1)解:(Ⅰ)记矩阵A=
12
34
,故|A|=-2,故A-1=
-21
3
2
-
1
2
.…(2分)
由已知得M=
710
46
A-1=
710
46
-21
3
2
-
1
2
=
12
11
.…(3分)
(Ⅱ)设二阶矩阵M所对应的变换为
x′
y′
=
12
11
x
y
,得
x′=x+2y
y′=x+y

解得
x=-x′+2y′
y=x′-y′
,…(5分)
又3x2+8xy+6y2=1,故有3(-x'+2y')2+8(-x'+2y')(x'-y')+6(x'-y')2=1,
化简得x'2+2y'2=1. 故所得曲线的方程为x2+2y2=1.…(7分)
(2)解:(Ⅰ)∵t≠0,∴可将曲线C的方程化为普通方程:
x2
t2
+y2=4
.…(1分)
①当t=±1时,曲线C为圆心在原点,半径为2的圆;  …(2分)
②当t≠±1时,曲线C为中心在原点的椭圆.…(3分)
(Ⅱ)直线l的普通方程为:x-y+4=0.…(4分)
联立直线与曲线的方程,消y得
x2
t2
+(x+4)2=4
,化简得(1+t2)x2+8t2x+12t2=0.
若直线l与曲线C有两个不同的公共点,则△=64t4-4(1+t2)•12t2>0,解得t2>3.…(5分)
x1+x2=-
8t2
1+t2
x1x2=
12t2
1+t2
,…(6分)
OA
OB
=x1x2+y1y2=x1x2+(x1+4)(x2+4)
=2x1x2+4(x1+x2)+16=10.
解得t2=3与t2>3相矛盾. 故不存在满足题意的实数t.…(7分)
(3)解:(Ⅰ)∵f(x)=|x-2|+|x-4|≥|(x-2)-(x-4)|=2,…(2分)当且仅当2≤x≤4时,等号成立.
再由函数f(x)=|x-2|+|x-4|的最小值为m,可得m=2.…(3分)
(Ⅱ)[(
n2
a
)2+(
p2
b
)2+(
q2
c
)2]•(a2+b2+c2)
≥(
n2
a
•a+
p2
b
•b+
q2
c
•c)2
,…(5分)
即:(
n4
a2
+
p4
b2
+
q4
c2
)×2≥
(n2+p2+q22=4,
n4
a2
+
p4
b2
+
q4
c2
≥2
.…(7分)
点评:本题主要考查矩阵、逆矩阵、曲线的线性变换等基础知识.曲线的参数方程、直线的极坐标方程等基础知识.绝对值的几何意义、柯西不等式等基础知识,考查运算求解能力以及推理论证能力,及函数与方程思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)请写出fn(x)的表达式(不需证明);
(Ⅱ)设fn(x)的极小值点为Pn(xn,yn),求yn
(Ⅲ)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,试求a-b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)下列函数中,既是偶函数,且在区间(0,+∞)内是单调递增的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数f(x)=ax2+lnx.
(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-
12
的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数y=f(x)的定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=(  )

查看答案和解析>>

同步练习册答案