精英家教网 > 高中数学 > 题目详情

【题目】已知数列{bn}是等差数列,b11b1b2b10145.

(1)求数列{bn}的通项公式bn

(2)设数列{an}的通项anloga(其中a0a≠1).记Sn是数列{an}的前n项和,试比较Snlogabn1的大小,并证明你的结论.

【答案】1bn3n2.2)当a1时,Snlogabn1,当0a1时,Snlogabn1

【解析】

(1)设数列{bn}的公差为d

由题意得∴bn3n2.

(2)bn3n2,知Snloga(11)logaloga

loga

logabn1loga,于是,比较Snlogabn1的大小比较

(11)的大小.

n1,有11>

n2,有(11)>>.

推测(11)(*)

n1时,已验证(*)式成立;

假设nk(k≥1)(*)式成立,即(11)

则当nk1时,

(11)>.

>0

从而(11),即当nk1时,(*)式成立.由①②(*)式对任意正整数n都成立.于是,当a1时,Snlogabn1,当0a1时,Snlogabn1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线处的切线方程;

(2)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的方程为.曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若有三个不同的公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人投篮命中的概率分别为,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.

(1)求比赛结束后甲的进球数比乙的进球数多1的概率;

(2)设表示比赛结束后甲、乙两人进球数的差的绝对值,求的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在含有个元素的集合中,若这个元素的一个排列(,…,)满足,则称这个排列为集合的一个错位排列(例如:对于集合,排列的一个错位排列;排列不是的一个错位排列).记集合的所有错位排列的个数为.

(1)直接写出的值;

(2)当时,试用表示,并说明理由;

(3)试用数学归纳法证明:为奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点ABCA1B1C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一款智能学习APP,学习内容包含文章学习和视频学习两类,且这两类学习互不影响.已知该APP积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟积2分,每日上限积6分.经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频学习积分的概率分布表如表2所示.

(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;

(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为,求的概率分布及数学期望.

查看答案和解析>>

同步练习册答案