【题目】利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅临界值表来确定推断“X与Y有关系”的可信度,如果k>5.024,那么就推断“X和Y有关系”,这种推断犯错误的概率不超过( )
A. 0.25 B. 0.75
C. 0.025 D. 0.975
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,上顶点与两焦点构成的三角形为正三角形.
(1)求椭圆的离心率;
(2)过点的直线与椭圆交于两点,若的内切圆的面积的最大值为,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,.
(1)若方程有三个解,试求实数的取值范围;
(2)是否存在实数,(),使函数的定义域与值域均为?若存在,求出所有的区间,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,,).
(1)若的部分图像如图所示,求的解析式;
(2)在(1)的条件下,求最小正实数,使得函数的图象向左平移个单位后所对应的函数是偶函数;
(3)若在上是单调递增函数,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中,,,于点,于点.
(1)如图1,作的角平分线交于点,连接.求证:;
(2)如图2,连接,点与点关于直线对称,连接、.
①依据题意补全图形;
②用等式表示线段、、之间的数量关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数()是偶函数.
(1)求k的值;
(2)若函数的图象与直线没有交点,求的取值范围;
(3)若函数,,是否存在实数使得最小值为,若存在,求出的值; 若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,椭圆的右焦点为,离心率,过点且垂直于轴的直线被椭圆截得的弦长为1.
(Ⅰ)求椭圆的方程;
(Ⅱ)记椭圆的上,下顶点分别为A,B,设过点的直线与椭圆分别交于点,求证:直线必定过一定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列表述正确的是( )
①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理;
③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理;
⑤类比推理是由特殊到特殊的推理.
A. ①②③ B. ②③④ C. ②④⑤ D. ①③⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com