【题目】如图,四面体ABCD中,O是BD中点,AB=AD=2,.
(1)求证:AO⊥平面BCD;
(2)求点D到平面ABC的距离。
【答案】(1)详见解析(2)
【解析】
(1)利用等腰三角形和勾股定理得到AO与BD,OC垂直,即可得证;
(2)利用第一步得到的三线垂直,建立空间坐标系,容易找到各点坐标,从而得到所需向量和法向量,代入公式即可得解.
(1)连接OC,
∵BO=DO,AB=AD,
∴AO⊥BD,
∵BO=DO,BC=CD,
∴CO⊥BD,
在△AOC中,由题设知
AO,,AC,
∴AO2+CO2=AC2,
∴∠AOC=90°,
即AO⊥OC,
∵BD∩OC=O,
∴AO⊥平面BCD;
(2)以O为原点,如图建立空间直角坐标系,
则A(0,0,),B(,0,0),
C(0,,0),D(,0,0),
,.
设平面ABC的一个法向量为(x,y,z),
则
令y=1,得(,1,)
又,
∴点D到平面ABC的距离
,
即点D到平面ABC的距离为.
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知数列的前项和,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,是否存在,使得、、成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,侧棱底面,且, 是棱的中点,点在侧棱上运动.
(1)当是棱的中点时,求证: 平面;
(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为4,离心率为.
(1)求椭圆的标准方程;
(2)过右焦点的直线交椭圆于两点,过点作直线的垂线,垂足为,连接,当直线的倾斜角发生变化时,直线与轴是否相交于定点?若是,求出定点坐标,否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m,n是两条不同直线,,,是三个不同平面,给出下列四个命题:①若m⊥,n⊥,则m//n;②若//,//,m⊥,则m⊥;③若m//,n//,则m//n;④⊥,⊥,则//.其中正确命题的序号是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在底面是边长为6的正方形的四棱锥P--ABCD中,点P在底面的射影H为正方形ABCD的中心,异面直线PB与AD所成角的正切值为,则四棱锥P--ABCD的内切球与外接球的半径之比为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,四边形为矩形, 为等腰三角形, ,平面平面,且, , 分别为的中点.
(1)证明: 平面;
(2)证明:平面平面;
(3)求四棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com