精英家教网 > 高中数学 > 题目详情

【题目】如图,四面体ABCD中,OBD中点,AB=AD=2,.

(1)求证:AO⊥平面BCD

(2)求点D到平面ABC的距离。

【答案】(1)详见解析(2)

【解析】

(1)利用等腰三角形和勾股定理得到AOBDOC垂直,即可得证;

(2)利用第一步得到的三线垂直,建立空间坐标系,容易找到各点坐标,从而得到所需向量和法向量,代入公式即可得解.

(1)连接OC

BODOABAD

AOBD

BODOBCCD

COBD

在△AOC中,由题设知

AOAC

AO2+CO2AC2

∴∠AOC=90°,

AOOC

BDOCO

AO⊥平面BCD

(2)以O为原点,如图建立空间直角坐标系,

A(0,0,),B,0,0),

C(0,,0),D,0,0),

设平面ABC的一个法向量为xyz),

y=1,得,1,

∴点D到平面ABC的距离

即点D到平面ABC的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知数列的前项和,且

)求数列的通项公式;

)令,是否存在,使得成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面,且, 是棱的中点,点在侧棱上运动.

(1)当是棱的中点时,求证: 平面

(2)当直线与平面所成的角的正切值为时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中,平面是线段的中点,.

(1)证明:平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点的直线交椭圆于两点,过点作直线的垂线,垂足为连接当直线的倾斜角发生变化时,直线轴是否相交于定点?若是,求出定点坐标,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,集合.

(1)若“”是“”的必要条件,求实数的取值范围;

(2)若中只有一个整数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n是两条不同直线,是三个不同平面,给出下列四个命题:①若m⊥n,则m//n;②若////m,则m⊥;③若m//n//,则m//n;④,则//.其中正确命题的序号是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是边长为6的正方形的四棱锥P--ABCD中,点P在底面的射影H为正方形ABCD的中心,异面直线PB与AD所成角的正切值为,则四棱锥P--ABCD的内切球与外接球的半径之比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,四边形为矩形, 为等腰三角形, ,平面平面,且分别为的中点.

(1)证明: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

同步练习册答案