精英家教网 > 高中数学 > 题目详情
16.已知F1为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点,过F1的直线l与椭圆交于两点P,Q.
(Ⅰ)若直线l的倾斜角为45°,求|PQ|;
(Ⅱ)设直线l的斜率为k(k≠0),点P关于原点的对称点为P′,点Q关于x轴的对称点为Q′,P′Q′所在直线的斜率为k′.若|k′|=2,求k的值.

分析 (Ⅰ)直线l的倾斜角为45°,直线l的方程为y=x+1,代入椭圆方程,由韦达定理及弦长公式即可求得|PQ|;
(Ⅱ)设直线l:y=k(x+1),代入椭圆方程,利用韦达定理及直线的斜率公式求得丨k′丨=丨$\frac{{y}_{1}-{y}_{2}}{{x}_{1}+{x}_{2}}$丨=丨$\frac{3\sqrt{1+{k}^{2}}}{2k}$丨=2,即可求得k的值.

解答 解:(Ⅰ)椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,a=2,b=$\sqrt{3}$,c=1,
椭圆的左焦点F1(-1,0),设P(x1,y1),Q(x2,y2),
又直线l的倾斜角为45°,
∴直线l的方程为y=x+1,…(1分)
由$\left\{\begin{array}{l}{y=x+1}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,整理得:7x2+8x-8=0,…(3分)
则x1+x2=-$\frac{8}{7}$,x1•x2=-$\frac{8}{7}$.…(4分)
丨PQ丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{(-\frac{8}{7})^{2}+4×\frac{8}{7}}$=$\frac{24}{7}$,
∴|PQ|=$\frac{24}{7}$;…(5分)
(Ⅱ)由$\left\{\begin{array}{l}{y=k(x+1)}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,整理得:(3+4k2)x2+8k2x+4k2-12=0,…(6分)
则x1+x2=-$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,…(8分)
依题意P′(-x1,-y1),Q′(x2,-y2),且y1=k(x1+1),y2=k(x2+1),
∴丨k′丨=丨$\frac{{y}_{1}-{y}_{2}}{{x}_{1}+{x}_{2}}$丨=丨$\frac{k({x}_{1}-{x}_{2})}{{x}_{1}+{x}_{2}}$丨,…(10分)
其中丨x1-x2丨=$\sqrt{({x}_{1}-{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{12\sqrt{1+{k}^{2}}}{3+4{k}^{2}}$,…(11分)
∴丨k′丨=丨$\frac{3\sqrt{1+{k}^{2}}}{2k}$丨=2.…(12分)
解得:7k2=9,k=±$\frac{3}{7}$$\sqrt{7}$,
k的值±$\frac{3}{7}$$\sqrt{7}$..…(13分)

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及直线的斜率公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.命题“?x∈R,tanx≥0”的否定是?x∈R,tanx<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆M过点A(0,$\sqrt{3}$),B(1,0),C(-3,0).
(Ⅰ)求圆M的方程;
(Ⅱ)过点(0,2)的直线l与圆M相交于D、E两点,且|DE|=2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.双曲线$\frac{x^2}{3}-{y^2}=1$的一个焦点坐标为(  )
A.$(\sqrt{2},0)$B.$(0,\sqrt{2})$C.(2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在正方体ABCD-A1B1C1D1中,异面直线AD,BD1所成角的余弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.F是抛物线y2=4x的焦点,P为抛物线上一点.若|PF|=3,则点P的纵坐标为(  )
A.±3B.$±\;2\sqrt{2}$C.±2D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线y2=2x,两点M(1,0),N(3,0).
(Ⅰ)求点M到抛物线准线的距离;
(Ⅱ)过点M的直线l交抛物线于两点A,B,若抛物线上存在一点R,使得A,B,N,R四点构成平行四边形,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,将全体正奇数排成一个三角形数阵,根据以上排列规律,数阵中第8行(从上向下数)第3个数(从左向右数)是95.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知平行四边形三个顶点的坐标分别为A(-3,0),B(2,-2),C(5,2),则第四个顶点D的坐标不可能是(  )
A.(10,0)B.(0,4)C.(-6,-4)D.(6,-1)

查看答案和解析>>

同步练习册答案