精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥PABCD中,AP⊥平面PCDADBCABBCADEF分别为线段ADPC的中点.

(1)求证:AP∥平面BEF

(2)求证:BE⊥平面PAC.

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题分析:

(1)证明四边形是平行四边形,可得的中点,利用为线段的中点,可得,从而可证平面

(2)证明,即可证明平面.

试题解析:

(1)AC∩BE=O,连接OF,EC.

由于EAD的中点,

AB=BC=AD,AD∥BC,

∴AE∥BC,AE=AB=BC,

因此四边形ABCE为菱形,

∴OAC的中点.

FPC的中点,因此在△PAC中,可得AP∥OF.

OF平面BEF,AP平面BEF.

∴AP∥平面BEF.

(2)由题意知ED∥BC,ED=BC.

∴四边形BCDE为平行四边形,

因此BE∥CD.

AP⊥平面PCD,

∴AP⊥CD,

因此AP⊥BE.

∵四边形ABCE为菱形,

∴BE⊥AC.

AP∩AC=A,AP,AC平面PAC,

∴BE⊥平面PAC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商城购物,且参加者必须从淘宝网和京东商城选择一家购物.

(1)求这4个人中恰有2人去淘宝网购物的概率;

(2)求这4个人中去淘宝网购物的人数大于去京东商城购物的人数的概率:

(3)用X,Y分别表示这4个人中去淘宝网购物的人数和去京东商城购物的人数,记,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)及其导数f′(x),若存在x0,使得f(x0)f′(x0),则称x0f(x)的一个“巧值点”,则下列函数中有“巧值点”的是________

f(x)x2f(x)exf(x)lnxf(x)tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 .

)讨论的单调性;

)当时,若 ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·洛阳市统考)已知数列{an}的前n项和为Snan≠0a11,且2anan14Sn3(nN*)

(1)a2的值并证明:an2an2

(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)|2x3||2xa|aR.

(1)若不等式f(x)5的解集非空,求实数a的取值范围;

(2)若函数yf(x)的图象关于点对称,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知椭圆C (a>b>0)的左、右焦点分别为F1F2,离心率为,直线yxb截得椭圆C的弦长为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点(m,0)作圆x2y2=1的切线,交椭圆C于点AB,求|AB|的最大值,并求取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(其中为参数),以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(其中为常数).

1)若直线与曲线恰好有一个公共点,求实数的值;

2)若,求直线被曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).

(1)写出直线l的普通方程与曲线C的直角坐标方程;

(2)设曲线C经过伸缩变换得到曲线,设M(x,y)为上任意一点,求的最小值,并求相应的点M的坐标.

查看答案和解析>>

同步练习册答案