精英家教网 > 高中数学 > 题目详情
9.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且一个零点是2,则使得f(x)<0的x的取值范围是(  )
A.(-∞,-2]B.(-∞,-2)∪(2,+∞)C.(2,+∞)D.(-2,2)

分析 根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.

解答 解:∵函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,
∴函数f(x)在[0,+∞)上为增函数,且f(-2)=-f(2)=0,
作出函数f(x)的草图:
如图:则不等式等价为f(x)<0的解为-2<x<2,
故不等式的解集为(-2,2).
故选:D.

点评 本题主要考查不等式的解集,利用函数奇偶性和单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ln($\sqrt{1+4{x}^{2}}$-2x)+3,则f(lg2)+f(lg$\frac{1}{2}$)=(  )
A.0B.-3C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=ax2+(b-3)x+3,x∈[a2-2,a]是偶函数,则a+b=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=log${\;}_{\frac{1}{4}}}$(x2-2mx+3)在区间(-∞,1)上是增函数,则实数m的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)当x∈[-$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$cos(\frac{π}{4}-θ)cos(\frac{π}{4}+θ)=\frac{{\sqrt{2}}}{6}$,则cos2θ=$\frac{{\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.O为坐标原点,直线l与圆x2+y2=2相切.
(1)若直线l分别与x、y轴正半轴交于A、B两点,求△AOB面积的最小值及面积取得最小值时的直线l的方程.
(2)设直线l交椭圆$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1于P、Q两点,M为PQ的中点,求|OM|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,cosB=$\frac{5}{13}$,cosC=$\frac{4}{5}$.(1)求sinA的值;(2)面积S△ABC=$\frac{33}{2}$,求BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设变量x与y线性相关,且相关系数为0.875,设变量x1=10x,y1=10y,则变量y1与x1的相关系数为(  )
A.0.875B.0.125C.1D.不确定

查看答案和解析>>

同步练习册答案