精英家教网 > 高中数学 > 题目详情
18.以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为为$\frac{\sqrt{2}}{2}$.

分析 由题意设出圆锥的底面半径,求出圆锥的侧面积,求出圆柱的侧面积即可得到圆柱的侧积面与圆锥的侧面积之比.

解答 解:设圆锥的底面半径为 r,由题意圆锥底面半径等于圆锥的高,
可知圆锥的侧面积为:πr•$\sqrt{2}$r=$\sqrt{2}$πr2
圆柱的侧面积为:2πr•r=2πr2
所以圆柱的侧积面与圆锥的侧面积之比为:$\sqrt{2}$πr2:2πr2=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.

点评 本题是基础题,考查圆锥圆柱的侧面积的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\frac{1}{2}$x-sinx,则f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\int_{\frac{π}{2}}^π{sinx}dx$的值为(  )
A.$\frac{π}{2}$B.πC.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示正方形O'A'B'C'的边长为2cm,它是一个水平放置的一个平面图形的直观图,则原图形的周长是16cm,面积是$8\sqrt{2}c{m^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某单位有老人20人,中年人120人,青年人100人,现采用分层抽样的方法从所有人中抽取一个容量为n的样本,已知青年人抽取的人数为10人,则n=24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在ABC-A1B1C1中,所有棱长均相等,且∠ABB1=60°,D为AC的中点,求证:
(1)B1C∥平面A1BD;
(2)AB⊥B1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x>0,y>0,且2x+y=6,求4x2+y2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,边BC上的高所在的直线方程为x-3y+2=0,∠BAC的平分线所在的直线方程为y=0,若点B的坐标为(1,3).
(1)求点A和点C的坐标;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lg(x+$\frac{a}{x}$-2),其中a是大于0的常数.
(1)当a=-3时,求函数f(x)的定义域;
(2)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.

查看答案和解析>>

同步练习册答案