ÒÑÖª¼¯ºÏU = {(x£¬y)| xÎR, y ÎR}, M = {(x£¬y) | |x | + | y | < a }£¬P = {(x£¬y)| y =" f" (x ) }£¬ÏÖ¸ø³öÏÂÁк¯Êý£º ¢Ùy = ax , ¢Ú y = logax , ¢Ûy =" sin(x" + a), ¢Üy =" cos" a x£¬Èô0 < a < 1ʱ£¬ºãÓÐP¡ÉCUM = P£¬Ôòf (x)¿ÉÒÔÈ¡µÄº¯ÊýÓÐ
A£®¢Ù¢Ú¢ÛB£®¢Ù¢Ú¢ÜC£®¢Ù¢Û¢ÜD£®¢Ú¢Û¢Ü
B
¡ß∁uM={£¨x£¬y£©||x|+|y|¡Ýa}£¬0£¼a£¼1ʱ£¬P¡É∁uM=P£¬¡àP={£¨x£¬y£©y=f£¨x£©}⊆∁uM£¬ÈçͼËùʾ£º½áºÏͼÐοɵÃÂú×ãÌõ¼þµÄº¯ÊýͼÏóӦλÓÚÇúÏß|x|+|y|=a£¨-a¡Üx¡Üa £©µÄÉÏ·½£®
¢ÙÖУ¬x¡ÊR£¬y£¾0£¬Âú×ã|x|+|y|¡Ýa£¬¹Ê¢Ù¿ÉÈ¡£®
¢ÚÖУ¬x£¾0£¬y=logax¡ÊR£¬Âú×ã||x|+|y|¡Ýa£¬¹Ê¢Ú¿ÉÈ¡£®
¢ÛÖеĺ¯Êý²»Âú×ãÌõ¼þ£¬Èç  x=0£¬Ê±£¬£¬²»Âú×ã|x|+|y|¡Ýa£®
¢ÜÖÐx¡ÊR£¬-1¡Üy¡Ü1£¬Âú×ã|x|+|y|¡Ýa£¬¹Ê¢Ü¿ÉÈ¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö12·Ö£©
ÒÑÖª¼¯ºÏ£¬¼¯ºÏ£¬Ç󼯺Ï

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

Èô¼¯ºÏA£½{x||x|¡Ü1£¬x¡ÊR}£¬B£½{y|y£½£¬x¡ÊR}£¬ÔòA¡ÉB£½(¡¡¡¡)
A£®{x|£­1¡Üx¡Ü1}B£®{x|x¡Ý0}
C£®{x|0¡Üx¡Ü1}D£®¦µ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

ÉèA£¬BÊÇ·Ç¿Õ¼¯ºÏ£¬¶¨ÒåA*B£½{x|x¡ÊA¡ÈBÇÒx∉A¡ÉB}£¬ÒÑÖªA£½{x|0¡Üx¡Ü3}£¬B£½{y|y¡Ý1}£¬ÔòA*B£½____________________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

£¨±¾Ð¡ÌâÂú·Ö12·Ö£©ÒÑÖª¼¯ºÏ£¬£¬
Çó£¨1£©£»£¨2£©.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

(12·Ö)ÒÑÖª¼¯ºÏA£½£ûx| £ý, B="{x|" } £¬Çó£º
¢Å                     ¢Æ¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

É輯ºÏM =£¬N =£¬ Ôò   (     )
A£®M=NB£®MNC£®MND£®MN=

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

Èô£¬Ôò£¨  £©.
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÒÑÖª¼¯ºÏM£½{0£¬1£¬2£¬3}£¬ N£½{x|£¼2x£¼4}£¬Ôò¼¯ºÏM¡É(CRN)µÈÓÚ£¨¡¡¡¡£©
A£®{0£¬1£¬2}B£®{2£¬3}C£®D£®{0£¬1£¬2£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸