精英家教网 > 高中数学 > 题目详情
19.P是圆x2+y2=1上的动点,作PD⊥y轴,D为垂足,则PD中点的轨迹方程为(  )
A.$\frac{{x}^{2}}{\frac{1}{4}}$+$\frac{{y}^{2}}{1}$=1B.$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{\frac{1}{4}}$=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{1}$=1D.$\frac{{x}^{2}}{1}$+$\frac{{y}^{2}}{4}$=1

分析 设出P点坐标为(x1,y1),D点坐标为(0,y1),PD的中点坐标为(x,y),然后由中点坐标公式把P的坐标用PD中点坐标表示,代入圆的方程得答案.

解答 解:设P点坐标为(x1,y1),D点坐标为(0,y1),PD的中点坐标为(x,y),根据题意得:
x1=2x,y1=y,
∵点P位于圆上,
∴满足方程x2+y2=1,
即${{x}_{1}}^{2}+{{y}_{1}}^{2}=1$,也就是(2x)2+y2=1,
整理得:$\frac{{x}^{2}}{\frac{1}{4}}+\frac{{y}^{2}}{1}=1$.
故选:A.

点评 本题考查了轨迹方程的求法,考查了代入法,关键是把P的坐标用PD的中点坐标表示,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.生产一定数量的商品的全部费用称为市生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=$\frac{1}{2}$x2+2x+20(万元),每一万件售价是20万元,且生产的产品全部售完,则该企业一个月的利润Q(x)=(  )
A.$\frac{1}{2}$x2-18x+20B.-$\frac{1}{2}$x2+18x-20C.$\frac{1}{2}$x2+2xD.$\frac{1}{2}$x2-18x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知实数a>0,设p:函数y=ax在(-∞,+∞)上递减;q:$?x∈R,a>sinx-\frac{1}{2}$.如果“p∨q”为真,“p∨q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,D为BC的中点,O为AD的中点,若$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BC}$,则λ+μ等于$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售单价每涨x(x∈N*)元,销售量就减少x个,求利润y的最大值及此时此商品的售价.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(-b,2c+a),$\overrightarrow{n}$=(cosB,cosA),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求$\frac{a+c}{b}$的取值范围;
(2)已知BD是△ABC的中线,若$\overrightarrow{BA}$•$\overrightarrow{BC}$=-2,求|$\overrightarrow{BD}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆C的中心在原点,焦点在坐标轴上,经过P1($\sqrt{6}$,1),P2($\sqrt{3}$,$\sqrt{2}$).
(1)求椭圆C的标准方程;
(2)斜率不为0的直线l与椭圆C交于M、N两点,定点A(0,$\sqrt{3}$),若|AM|=|AN|,求直线1的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若关于x的方程4x+(a-3)•2x+a=0在x∈(-∞,1)上有两个不等实根,则实数a 的取值范围是(  )
A.(-∞,1)∪(9,+∞)B.($\frac{2}{3}$,1)C.($\frac{2}{3}$,3)D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知三棱锥S-ABC,SA⊥底面ABC,∠ABC=90°,AB=SA=4,BC=3,则直线SB与AC所成角的余弦值为$\frac{2\sqrt{2}}{5}$.

查看答案和解析>>

同步练习册答案