精英家教网 > 高中数学 > 题目详情

已知{an}是等差数列,其前n项和为5n,{bn}是等比数列,且a1=b1=2,a2+b4=21,b4-S3=1.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)记cn=an•bn,求数列{cn}的前n项和Tn

解:(Ⅰ)设等差数列的公差为d,等比数列的首项为q,
∵a1=b1=2,a2+b4=21,b4-S3=1

∴d=3,q=2
∴an=3n-1,bn=2n
(Ⅱ)cn=an•bn=(3n-1)•2n
∴Tn=2×21+5×22+…+(3n-1)•2n
∴2Tn=2×22+5×23+…+(3n-1)•2n+1
∴-Tn=2×21+3×22+…+3•2n-(3n-1)•2n+1=(4-3n)•2n+1-8
∴Tn=(3n-4)•2n+1+8.
分析:(Ⅰ)设出公比和公差,根据条件,组成方程组,求出公比和公差,即可求出通项;
(Ⅱ)借助于错位相减法求出Tn的表达式即可.
点评:本题考查等差数列和等比数列的综合问题,考查数列的求和,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案