精英家教网 > 高中数学 > 题目详情

【题目】小明下班回家途经3个有红绿灯的路口,交通法规定:若在路口遇到红灯,需停车等待;若在路口没遇到红灯,则直接通过.经长期观察发现:他在第一个路口遇到红灯的概率为,在第二、第三个道口遇到红灯的概率依次减小,在三个道口都没遇到红灯的概率为,在三个道口都遇到红灯的概率为,且他在各路口是否遇到红灯相互独立.

1)求小明下班回家途中至少有一个道口遇到红灯的概率;

2)求小明下班回家途中在第三个道口首次遇到红灯的概率;

3)记为小明下班回家途中遇到红灯的路口个数,求数学期望.

【答案】1;(2;(3.

【解析】

1)根据对立事件的概率关系结合已知,即可求解;

2)设第二、三个道口遇到红灯的概率分别为,根据已知列出关于方程组,求得,即可求出结论;

3的可能值为分别求出概率,得出随机变量的分布列,由期望公式,即可求解.

1)因为小明在三个道口都没遇到红灯的概率为

所以小明下班回家途中至少有一个道口遇到红灯的概率为

(2)设第二、三个道口遇到红灯的概率分别为

依题意解得(舍去),

所以小明下班回家途中在第三个道口首次遇到红灯的概率

3的可能值为

分布列为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某保险公司为客户定制了5个险种:甲,一年期短险;乙,两全保险;丙,理财类保险;丁,定期寿险:戊,重大疾病保险,各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得出如下的统计图例,以下四个选项错误的是(

A.54周岁以上参保人数最少B.1829周岁人群参保总费用最少

C.丁险种更受参保人青睐D.30周岁以上的人群约占参保人群的80%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形,

1)证明:平面

2)求点到平面的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60/盒、65/盒、80/盒、90/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%

①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近两年来,以《中国诗词大会》为代表的中国文化类电视节目带动了一股中国文化热潮.某台举办闯关答题比赛,共分两轮,每轮共有4类题型,选手从前往后逐类回答,若中途回答错误,立马淘汰,若全部回答正确,就能获得一枚复活币并进行下一轮答题,两轮都通过就可以获得最终奖金.选手在第一轮闯关获得的复活币,系统会在下一轮答题中自动使用,即下一轮重新进行闯关答题时,在某一类题型中回答错误,自动复活一次,视为答对该类题型.若某选手每轮的4类题型的通过率均分别为,则该选手进入第二轮答题的概率为_________;该选手最终获得奖金的概率为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20.

1)根据题意,请将下面的列联表填写完整;

选择“西游传说”

选择“千古蝶恋”

总计

成年人

未成年人

总计

2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.

附参考公式与表:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某医院中随机抽取了位医护人员的关爱患者考核分数(患者考核:分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:分制),用相关的特征量表示,数据如下表:

(1)求关于的线性回归方程(计算结果精确到);

(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为分时,他的关爱患者考核分数(精确到).

参考公式及数据:回归直线方程中斜率和截距的最小二乘法估计公式分别为

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,点在第一象限,以为直径的圆与轴相切,动点的轨迹为曲线.

1)求曲线的方程;

2)若曲线在点处的切线的斜率为,直线的斜率为,求满足的点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法:

①命题的否定是

②若不等式的解集为,则不等式的解集为

③对于恒成立,则实数a的取值范围是

④已知pq),若pq的充分不必要条件,则实数a的取值范围是

正确的有________.

查看答案和解析>>

同步练习册答案