【题目】在直角坐标系中,曲线的参数方程为(为参数,),以坐标原点为极点,以轴正半轴为极轴的极坐标系中,曲线上一点的极坐标为,曲线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)设点在上,点在上(异于极点),若四点依次在同一条直线上,且成等比数列,求的极坐标方程.
科目:高中数学 来源: 题型:
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是“恰当回归方程”.
(1)从这组数据中随机选取组数据后,求剩下的组数据的间隔时间不相邻的概率;
(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
(3)为了使等候的乘客不超过人,试用(2)中方程估计间隔时间最多可以设置为多少(精确到整数)分钟.
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,.
(1)求证:;
(2)设为的中点,点在线段上,若直线平面,求的长;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个五位自然数数称为“跳跃数”,如果同时有或(例如13284,40329都是“跳跃数”,而12345,54371,94333都不是“跳跃数”),则由1,2,3,4,5组成没有重复数字且1,4不相邻的“跳跃数”共有_____个.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是R上的偶函数,对于都有成立,且,当,且时,都有.则给出下列命题:
①;
②函数图象的一条对称轴为;
③函数在[﹣9,﹣6]上为减函数;④方程在[﹣9,9]上有4个根;
其中正确的命题序号是___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有唯一一个整数,则实数的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P是△PMN的顶点,M(﹣2,0),N(2,0),直线PM,PN的斜率之积为﹣ .
(1)求点P的轨迹E的方程;
(2)设四边形ABCD的顶点都在曲线E上,且AB∥CD,直线AB,CD分别过点(﹣1,0),(1,0),求四边形ABCD的面积为时,直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】斐波那契数列()又称黄金分割数列,因数学家列昂纳多斐波那契()以兔子繁殖为例子而引入,故又称为“兔子数列”.在数学上,斐波纳契数列被以下递推的方法定义:数列满足:,,现从数列的前2024项中随机抽取1项,能被3整除的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com