精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为:为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于两点.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若点的极坐标为,求的面积.

【答案】(1)直线的普通方程为,曲线的直角坐标方程为;(2)

【解析】分析:(1)直线的参数方程为:为参数),消去t即可;曲线的极坐标方程为,利用直角坐标与极坐标之间的互化公式即可;

(2)转换成直角坐标去进行求解.

详解:(1)因为直线的参数方程为

故直线的普通方程为

又曲线的极坐标方程为,即

因为,∴,即

故曲线的直角坐标方程为.

(2)因为点的极坐标为,∴点的直角坐标为,∴点到直线的距离.

,代入中得

的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的图象过点

(1)求的值并求函数的值域;

(2)若关于的方程有实根,求实数的取值范围;

(3)若函数 ,则是否存在实数,使得函数的最大值为0?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,焦点在x轴上的椭圆C: =1经过点(b,2e),其中e为椭圆C的离心率.过点T(1,0)作斜率为k(k>0)的直线l交椭圆C于A,B两点(A在x轴下方).

(1)求椭圆C的标准方程;
(2)过点O且平行于l的直线交椭圆C于点M,N,求 的值;
(3)记直线l与y轴的交点为P.若 = ,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b∈R.若直线l:ax+y﹣7=0在矩阵A= 对应的变换作用下,得到的直线为l′:9x+y﹣91=0.求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某抛掷骰子游戏中,规定游戏者可以有三次机会抛掷一颗骰子若游戏者在前两次抛掷中至少成功一次才可以进行第三次抛掷,其中抛掷骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4.游戏规则如下:抛掷1枚骰子,第1次抛掷骰子向上的点数为奇数则记为成功,第2次抛掷骰子向上的点数为3的倍数则记为成功,第3次抛掷骰子向上的点数为6则记为成功.用随机变量表示该游戏者所得分数.

(1)求该游戏者有机会抛掷第3次骰子的概率;

(2)求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三年级有500名学生,为了了解数学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:

分组

频数

频率

12

4

合计

根据上面图表,求处的数值

在所给的坐标系中画出的频率分布直方图;

根据题中信息估计总体平均数,并估计总体落在中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的最大值是最小值的倍,求实数的值;

(2)若函数存在零点,求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标该目标爆炸停止射击否则就一直独立地射击至子弹用完现有5发子弹,设耗用子弹数为随机变量X.

(1)若该士兵射击两次,求至少射中一次目标的概率;

(2)求随机变量X的概率分布与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(0<φ<π)

(1)当φ时,在给定的坐标系内,用“五点法”做出函数f(x)在一个周期内的图象;

(2)若函数f(x)为偶函数,求φ的值;

(3)在(2)的条件下,求函数在[﹣π,π]上的单调递减区间.

查看答案和解析>>

同步练习册答案