精英家教网 > 高中数学 > 题目详情

【题目】已知曲线

(1)若,求经过点且与曲线只有一个公共点的直线方程:

(2)若,请在直角坐标平面内找出纵坐标不同的两个点,此两点满足条件:无论如何变化,这两个点都不在曲线上;

(3)若曲线与线段有公共点,求的最小值。

【答案】(1)(2)16

【解析】

(1)由题得曲线为,设直线,联立得再根据即得m的值和直线的方程.(2)由题得曲线为,当,当无论如何变化,曲线都不可能为所以两点可以是.(3)

联立得,当

分类讨论得到的最小值.

(1)曲线为,设直线,联立得

所求直线方程为

(2)曲线为,当,当

无论如何变化,曲线都不可能为,∴两点可以是

(3)联立得,当

,①,数形结合可得

,且只一个共公点,

数形结合可得,

,且有两个公共点,

,数形结合可得

,且有两个公共点,

,不符,舍去

综上所述,的最小值为16

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小学对一年级的甲、乙两个班进行“数学学前教育”对“小学数学成绩优秀”影响的试验,其中甲班为试验班(实施了数学学前教育),乙班为对比班(和甲班一样进行常规教学,但没有实施数学学前教育),在期末测试后得到如下数据:

优秀人数

非优秀人数

总计

甲班

30

20

50

乙班

25

25

50

总计

55

45

100

能否在犯错误的概率不超过0.01的前提下,认为进行“数学学前教育”对“小学数学成绩优秀”有积极作用?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,坐标原点O到直线x+y-b=0的距离为.

(1)求椭圆C的标准方程;

(2)设过椭圆C的右焦点F且倾斜角为45°的直线l与椭圆C交于A,B两点,对于椭圆C上一点M,若(λ>0,μ>0),求λμ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间(﹣∞,t]上存在x,使得不等式x2﹣4x+t≤0成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,A,B两点为喷泉,圆心O为AB的中点,其中OA=OB=a米,半径OC=10米,市民可位于水池边缘任意一点C处观赏.

(1)若当∠OBC= 时,sin∠BCO= ,求此时a的值;
(2)设y=CA2+CB2 , 且CA2+CB2≤232.
(i)试将y表示为a的函数,并求出a的取值范围;
(ii)若同时要求市民在水池边缘任意一点C处观赏喷泉时,观赏角度∠ACB的最大值不小于 ,试求A,B两处喷泉间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:4﹣2:矩阵与变换
若圆C:x2+y2=1在矩阵 (a>0,b>0)对应的变换下变成椭圆E: ,求矩阵A的逆矩阵A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是 (t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个人从出生到死亡,在每个生日都测量身高,并作出这些数据的散点图,这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析,下表是一位母亲给儿子做的成长记录:

年龄/周岁

3

4

5

6

7

8

9

身高/cm

91.8

97.6

104.2

110.9

115.6

122.0

128.5

年龄/周岁

10

11

12

13

14

15

16

身高/cm

134.2

140.8

147.6

154.2

160.9

167.5

173.0

(1)年龄(解释变量)和身高(预报变量)之间具有怎样的相关关系?

(2)如果年龄相差5岁,则身高有多大差异(3~16岁之间)?

(3)如果身高相差20 cm,其年龄相差多少(3~16岁之间)?

(4)试判断该函数模型是否能够较好地反映年龄与身高的关系.

查看答案和解析>>

同步练习册答案