精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面,四边形是菱形,点在线段.

1)证明:平面平面

2)若,二面角的余弦值为,求的值.

【答案】1)证明见解析;(2

【解析】

1)根据菱形的对角线垂直以及直线与平面垂直的性质可证平面,再根据平面与平面垂直的判定定理可证平面平面

2)以轴,轴,以平行于的直线为轴,建立空间直角坐标系根据平面的法向量可解得结果.

1)因为四边形是菱形,所以.

因为平面,所以.

因为,所以平面.

因为平面,所以平面平面.

2)因为,设,分别以轴,轴,以平行于的直线为轴,建立如图所示的空间直角坐标系

,则

.

设平面的一个法向量为,则,即

,则,则.

设平面的一个法向量为,则,即

,则,则.

,因为,所以,所以

所以.

于是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知长方形中,,现将长方形沿对角线折起,使,得到一个四面体,如图所示.

(1)试问:在折叠的过程中,异面直线能否垂直?若能垂直,求出相应的的值;若不垂直,请说明理由;

(2)当四面体体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图中,分别是的中点,将沿折起连结,得到多面体.

1)证明:在多面体中,

2)在多面体中,当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,有下列四个命题:

①函数是奇函数;

②函数是单调函数;

③当时,函数恒成立;

④当时,函数有一个零点,

其中正确的是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别是其左、右焦点,且过点.

(1)求椭圆的标准方程;

(2)求的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的底面边长为2 是侧棱的中点.

1证明:平面平面

2若平面与平面所成锐角的大小为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某部门在上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,单位:分钟)将统计数据按,…,分组,制成频率分布直方图如图所示:

1)求a的值;

2)记A表示事件“在上班高峰时段某乘客在甲站乘车等待时间少于20分钟”试估计A的概率;

3)假设同组中的每个数据用该组区间左端点值来估计,记在上班高峰时段甲、乙两站各抽取的50名乘客乘车的平均等待时间分别为,求的值,并直接写出的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.

(1)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.

(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为p(每次抽奖互不影响,且p的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15.若游客甲计划购买80元的土特产,请列出实际付款数X()的分布列并求其数学期望.

:参考公式和数据:.

附表:

查看答案和解析>>

同步练习册答案