【题目】已知函数f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,则实数a的取值范围为( )
A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)
科目:高中数学 来源: 题型:
【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.
(1)求抛物线的标准方程;
(2)若不经过坐标原点的直线与抛物线相交于不同的两点, ,且满足,证明直线过轴上一定点,并求出点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得=80,=20,=184,=720.
(1)求家庭的月储蓄y对月收入x的线性回归方程=x+;
(2)判断变量x与y之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程=x+中,b=,=- ,其中,为样本平均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在研究函数f(x)=(x∈R)时,分别给出下面几个结论:
①等式f(-x)=-f(x)在x∈R时恒成立;
②函数f(x)的值域为(-1,1);
③若x1≠x2,则一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三个根.
其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1过点A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述:
①化简的结果为﹣.
②函数y=在(﹣∞,﹣1)和(﹣1,+∞)上是减函数;
③函数y=log3x+x2﹣2在定义域内只有一个零点;
④定义域内任意两个变量x1,x2,都有,则f(x)在定义域内是增函数.
其中正确的结论序号是_____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′( , ),当P是原点时,定义“伴随点”为它自身,现有下列命题:
①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A.
②单元圆上的“伴随点”还在单位圆上.
③若两点关于x轴对称,则他们的“伴随点”关于y轴对称
④若三点在同一条直线上,则他们的“伴随点”一定共线.
其中的真命题是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com