精英家教网 > 高中数学 > 题目详情

【题目】某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件, 的图像是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件, ,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完;

(1)写出年利润(万元)关于年产量(千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

【答案】(1) (2) 当年产量千件时,该厂在这一商品的生产中所获利润最大,为万元.

【解析】试题分析:(1)由题可知,利润=售价-成本,分别对年产量不足件,以及年产量不小于件计算,代入不同区间的解析式,化简求得

2)分别计算年产量不足件,以及年产量不小于件的利润,当年产量不足80件时,由配方法解得利润的最大值为950万元,当年产量不小于件时,由均值不等式解得利润最大值为1000万元,故年产量为件时,利润最大为万元;

试题解析:(1)当时,

时,

所以).

2)当时,

此时,当时, 取得最大值万元.

时,

此时,当时,即时, 取得最大值万元,

所以年产量为件时,利润最大为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】排列组合
(1)7位同学站成一排,甲、乙两同学必须相邻的排法共有多少种?
(2)7位同学站成一排,甲、乙和丙三个同学都不能相邻的排法共有多少种?
(3)7位同学站成一排,甲不站排头,乙不站排尾,不同站法种数有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们称满足: )的数列为“级梦数列”.

(1)若是“级梦数列”且.求: 的值;

(2)若是“级梦数列”且满足 ,求的最小值;

(3)若是“0级梦数列”且,设数列的前项和为.证明: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点在圆周上,在边上,且,设

(1)记游泳池及其附属设施的占地面积为,求的表达式;

(2)怎样设计才能符合园林局的要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若m=﹣1求A∩B;
(2)若A∩B=,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,其中为常数;

(1)若,且是奇函数,求的值;

(2)若 ,函数的最小值是,求的最大值;

(3)若,在上存在个点 ,满足

,使得

求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以椭圆长、短轴四个端点为顶点为四边形的面积为.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图所示,记椭圆的左、右顶点分别为,当动点在定直线上运动时,直线分别交椭圆于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的极小值为0.

(1)求实数的值;

(2)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,关于的不等式只有1个整数解,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案